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Abstract

We develop a model of gross job and worker flows and use it to study how the wages,
permanent incomes and employment status of individual workers evolve over time and how
they are affected by aggregate labor market conditions. Our model helps explain various
other features of labor markets, such as the size and persistence of the changes in income
that workers experience due to displacements or job-to-job transitions, the length of job
tenures and unemployment duration, and the amount of worker turnover in excess of job
reallocation. We also examine the effects that labor market institutions and public policy
have on the gross flows, as well as on the resulting wage distribution, employment and
aggregate output in the equilibrium. From a theoretical point of view, we study the extent
to which the competitive equilibrium achieves an efficient allocation of resources.

∗This draft is preliminary and incomplete. The views expressed herein are those of the authors and not
necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.



1 Introduction

Recent empirical and theoretical studies on gross job and worker flows have changed the way

we think about the labor market. We now know that market economies exhibit high rates of

reallocation of employment across establishments as well as high rates of worker turnover from

one job to another and between employment and unemployment. We now view the number of

employed or unemployed workers as resulting from a large and continual reallocation process,

and we analyze how changes in public policy and the economic environment affect this process.

The study of the gross flows provides valuable hints on how the labor market carries out this

continual reallocation of resources, and at the same time raises many interesting questions: To

what extent are market economies able to perform this reallocation process efficiently? How is

this process affected by labor market policies? What determines the amount of worker turnover

in excess of job reallocation?

The empirical literature distinguishes between measures of job flows and worker flows. In a

series of influential studies using U.S. manufacturing census data, Davis and Haltiwanger (1992,

1999) and Davis, Haltiwanger and Schuh (1996) measure gross job creation (JCt) as the sum

of employment gains over all plants that expand or start up between dates t−1 and t; gross job

destruction (JDt) as the sum of employment losses over all plants that contract or shut down;

and gross job reallocation as the sum of gross job creation and destruction (JRt = JCt+JDt).

By showing that gross job creation and destruction are both large irrespective of whether

aggregate employment grows or declines, their work highlights the role of heterogeneous forces

that cause employment to expand in some plants and contract in others. Behind these large

job flows, however, are even larger worker flows.

Estimates of worker flows are based on establishment or worker surveys and measure the

movements of workers across establishments and labor-market states. Empirical studies that

draw on establishment data often define worker turnover at establishment i (WTit) as the sum

of the number of accessions (new hires) and separations (quits and displacements) between dates
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t−1 and t, and aggregate worker turnover (WTt) as the sum of worker turnover over establish-

ments. The number of workers who quit, get displaced, and get hired by each establishment is

at least as large as (and often significantly larger than) the net change of employment at that

establishment. Burgess, Lane and Stevens (2000), for example, refer to the difference between

worker turnover and the net employment change as “churning” (Cit = WTit − |eit − eit−1|,

where eit is employment in establishment i at the end of period t). This notion of churning

measures the number of worker transitions in excess of the minimum level needed to achieve

the actual change in employment. Summing over establishments delivers an aggregate measure

of churning: Ct =WTt − JRt.

Alternatively, using data from worker surveys we can define worker reallocation (WRt) as

the number of workers who change employment states (i.e., who change place of employment,

find or lose a job, or enter or exit the labor force) between dates t− 1 and t. Worker turnover

measures the number of labor market transitions, while worker reallocation counts the number of

workers who participate in transitions. A worker who moves from one establishment to another

increases the worker reallocation count by one and the aggregate worker turnover count by two;

hence, aggregate worker turnover is larger than worker reallocation by the number of job-to-job

transitions.1

Drawing from different data sources for job and worker flows, Davis and Haltiwanger (1992)

estimate that job creation and destruction account for no less than one-third and no more

than one-half of quarterly worker turnover in the U.S. manufacturing sector. New evidence

from data sets that incorporate information on the number of accessions and separations at

the establishment level indicates that for most establishments, for most of the time, worker

turnover is much larger than job reallocation. For example, Burgess, Lane and Stevens (2000)

use quarterly data from all private sector establishments in the state of Maryland and find

that churning flows account for 70% of worker turnover in nonmanufacturing and about 62% in
1This is the case provided both the worker-side and establishment-side data sets cover the entire economy

and provided no accessions or separations are reversed within the sample period; else WTt −WRt would be an
upper bound for the number of job-to-job transitions.
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manufacturing (job reallocation accounts for the rest). Similarly, based on data derived from the

unemployment insurance systems of eight U.S. states, Anderson and Meyer (1994) report that

gross job reallocation accounts for only 24% of quarterly worker turnover in manufacturing.

Drawing from a data set covering the universe of Danish manufacturing plants, Albæk and

Sørensen (1998) report a ratio of quarterly job reallocation to worker turnover of .42 and find

that replacement hiring (defined as the sum of accessions minus job creation) is on average

16.5% of manufacturing employment.2 Hamermesh, Hassink and van Ours (1994) find that

job reallocation is only one-third of worker turnover in a random sample of establishments in

the Netherlands. They also find that most mobility is into and out of existing jobs, not to

new or from destroyed jobs; that a large fraction of all hires (separations) take place at firms

where employment is declining (expanding); and that simultaneous hiring is mostly due to

unobservable heterogeneity in the workforce.

From an aggregate perspective, the amount of worker reallocation in excess of job realloca-

tion depends not only on the amount of simultaneous hiring and firing that takes place at the

establishment level (as measured by Cit), but also on the extent to which job-to-job transitions

are a common mechanism through which the market achieves the reallocation of workers. In

this respect, recent studies find that job-to-job flows are large: Fallick and Fleischman (2001)

estimate that in the United States in 1999, on average 4 million workers changed employers

from one month to the next (about 2.7% of employment), more than twice the number who

transited from employment to unemployment.

The fact that worker flows exceed job flows at the establishment level is evidence of hetero-

geneity over and above the cross-establishment heterogeneity that can be inferred from the size

of the job flows alone. And the large employment-to-employment flows indicate that job-to-job
2Albæk and Sørensen report interesting cross-establishment observations as well. For example, they report

that 62% of all separations are accounted for by plants with employment growth rates in the interval (−0.3, 0.1]
and that plants with employment growth rates in the interval (−0.1, 0.3] account for 56% of all hires. Burgess,
Lane and Stevens (2000) also present some establishment-level cross-sectional evidence, such as that most of the
employers in their data set have churning rates above 50%. (See their Figure 1 on page 483, which reports the
distribution of Cit/Wit.)
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transitions play a prominent role in the reallocation process. All this suggests that, in order to

understand the process that reallocates workers and employment positions in actual labor mar-

kets, we must study the nature of job-to-job transitions and the implications of heterogeneity

at the level of the employer-worker match.

In this paper, we develop an equilibrium search model that distinguishes between gross

job and worker flows, incorporates job-to-job transitions, and exhibits instances of replacement

hiring.3 We use the model to study how the employment status and wages of individual workers

evolve over time and how they are affected by aggregate labor market conditions. We also

examine the effects that labor market institutions and public policy have on the gross job and

worker flows, as well as on the resulting wage distribution, employment and aggregate output in

the equilibrium. In addition, our model helps explain various other features of labor markets.

For example, why do displaced workers tend to experience a significant and persistent fall in

incomes? Why do workers stay unemployed when on-the-job search is at least as effective as

off-the-job search? Why are good jobs not only better paid, but often also more stable?

The rest of the paper is organized as follows. Section 2 lays out the environment. Section

3 defines and characterizes the salient features of the equilibrium. For a special case, Section

4 provides a fuller characterization of the equilibrium set and discusses the main properties of

the allocations. Section 5 incorporates employment protection policies. Section 6 extends the

model to allow for free entry of employers. Section 7 discusses some of the related theoretical

literature on labor market matching models with on-the-job search. Section 8 concludes. The

Appendix contains proofs and explains some properties of the bargaining procedure we propose.
3Job and worker reallocation are one and the same by construction in the workhorse of much of the recent

macro-labor literature, the matching model of Mortensen and Pissarides (1994) or Pissarides (2000). And there
is no room for replacement hiring in the influential on-the-job search model of Burdett and Mortensen (1998).
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2 The Model

Time is continuous and the horizon is infinite. The economy is populated by a continuum of

fixed and equal numbers of workers and employers.4 We normalize the size of each population

to unity. Workers and employers are infinitely-lived and risk-neutral. They discount future

utility at rate r > 0, and are ex ante homogeneous in tastes and technology.

A worker meets a randomly chosen employer according to a Poisson process with arrival

rate α. An employer meets a random worker according to the same process. Upon meeting,

the employer-worker pair randomly draws a production opportunity of productivity y, which

represents the flow net output each agent will produce while matched. (Thus the pair produces

2y.) The random variable y takes one of N distinct values: y1, y2, . . . , yN , where 0 < y1 < y2 <

. . . < yN , and y = yi with probability πi for i = 1, ...,N , and
PN

i=1 πi = 1. For now, we assume

y remains constant for the duration of the match.5

Matched and unmatched agents meet potential partners at the same rate, so when an

employer and a worker meet and draw a productive opportunity each of them may or may not

already be matched with an old production partner. Each worker and employer can form at

most one productive partnership simultaneously. The realization of the random variable y that

an employer and worker draw when they first meet is observed without delay by them as well

as by their current partners. In fact, the productivity of the new potential match as well as

the productivities of the existing matches are public information to all the agents involved, i.e.

the worker and the employer who draw the new productivity and their existing partners if they

have any. On the other hand, each agent’s history is private information, except for what is

revealed by the current production match.

When a worker and an employer meet and find a new productive opportunity, the pair and
4Although our main interest here is in the labor market, our model is applicable to any other setting where

bilateral partnerships are relevant, such as the interactions between spouses, or between a tenant and a landlord,
or between a supplier and the buyer of a customized product.

5 In this basic setup, employers and workers are distinguised by type only in that each match requires exactly
one partner of each type. Below we analyze extensions where employers and workers are different in a variety of
ways.
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their old partners (if they have any) determine whether or not the new match is formed (and

consequently whether or not the existing matches are destroyed) as well as the once-and-for-

all side payments that each party pays or receives, through a bargaining protocol which we

will describe shortly. Utility is assumed to be transferable among all the agents involved in a

meeting. There is no outside court to enforce any formal contract, so that any effective contract

must be self-enforcing among the parties involved. If the parties who made contact decide

to form a new partnership, they leave their existing partners who then become unmatched.

In addition to these endogenous terminations, we assume any match is subject to exogenous

separation according to a Poisson process with arrival rate δ.

We use nit to denote the measure of matches of productivity yi and n0t to denote the

measure of unmatched employers or workers at date t. Let τkijt be the probability that a worker

with current productivity yi and an employer with current productivity yj form a new match

of productivity yk, given that they draw an opportunity to produce yk at time t. (Hereafter,

we will suppress the time subindex when no confusion arises.) The measure of workers in each

state evolves according to:

ṅi = απi

NX
j=0

NX
k=0

njnkτ
i
jk − αni

NX
j=0

NX
k=1

njπk(τ
k
ij + τkji)− δni (1)

ṅ0 = α
NX
i=1

NX
j=1

NX
k=1

ninjπkτ
k
ij + δ

NX
j=1

nj − αn20

NX
k=1

πkτ
k
00. (2)

The first term on the right hand side of (1) is the flow of new matches of productivity yi

created by all types workers and employers. The second term is the total flow of matches with

productivity yi destroyed endogenously when the worker or the employer leaves to form a new

match. The last term is the flow of matches dissolved exogenously. On the right hand side of

equation (2), the first term is the flow of workers who become unmatched when their employers

decide to break the current match to form a new match with another worker. The second term

is the flow of workers who become unmatched due to the exogenous dissolution of matches.

The third term is the flow of new matches created by unmatched workers and employers. (The
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creation of a new match involving an unmatched agent and a matched agent does not affect

the aggregate number of unmatched agents, since one previously unmatched agent becomes

matched, while one previously matched agent looses the partner to become unmatched.)

Before describing the competitive matching equilibrium with bargaining, we solve the so-

cial planner’s problem. The planner chooses τkij ∈ [0, 1] to maximize the discounted value of

aggregate output: Z ∞

0
e−rt

XN

i=1
2yinidt

subject to the flow constraints (1) and (2), and initial conditions for n0 and ni for i = 1, ..., N .

Letting λi be the shadow price of a match with productivity yi at date t, the Hamiltonian is

H =
NX
i=1

2yini − δ
NX
i=1

(λi − λ0)ni + α
NX
i=0

NX
j=0

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) .

The optimality conditions are:

τkij

⎧⎨⎩
= 1 if λk + λ0 > λi + λj
∈ [0, 1] if λk + λ0 = λi + λj
= 0 if λk + λ0 < λi + λj

(3)

together with the Euler equations,

rλi − λ̇i = 2yi − δ (λi − λ0) + α
NX
j=0

NX
k=1

njπk(τ
k
ij + τkji) (λk + λ0 − λi − λj) ,

rλ0 − λ̇0 = α
NX
j=0

NX
k=1

njπk(τ
k
0j + τkj0) (λk − λj) ,

and (1) and (2), for a given initial condition for n0 and ni at date 0. According to (3), to

achieve the optimal allocation the planner specifies that a type i worker and type j employer

should form a new match of productivity yk for sure, if and only if the sum of the shadow

prices of the new match and the unmatched worker and employee (which the new match would

generate) exceeds the sum of the shadow prices of the existing matches of productivity yi and

yj . From (3) we also learn that τkij = τkji, possibly except for the case of randomized strategies.

Intuitively, there is no inherent asymmetry between a worker and an employer, so the planner
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treats them symmetrically in the optimal allocation. These observations allow us to summarize

the first order necessary conditions as:

rλi − λ̇i = 2yi − δ (λi − λ0) + 2α
NX
j=0

NX
k=1

njπk max
0≤τkij≤1

τkij (λk + λ0 − λi − λj) (4)

rλ0 − λ̇0 = 2α
NX
j=0

NX
k=1

njπk max
0≤τk0j≤1

τk0j (λk − λj) . (5)

3 Competitive Matching Equilibrium

In this section we characterize the competitive matching equilibrium with the following bar-

gaining procedure. When an agent draws an opportunity to produce with a new partner, with

probability a half, she makes take-it-or-leave-it offers to her new potential partner and her old

partner (if she has one) about production and side payments. She can rank these two offers, by

making her offer to the old partner contingent on her offer to the new potential partner being

rejected. With another probability half, her new potential partner and her old partner (if she

has one) simultaneously make take-it-or-leave-it offers to her. After these offers are made, the

recipient of the offers chooses which one to accept. We also specify that matched agents split

the surplus symmetrically as long as neither agent encounters a production opportunity with

another potential partner.6

Because a worker and an employer who form a match are inherently symmetric, hereafter we

restrict our attention to symmetric equilibria in which workers and employers are treated sym-

metrically and are distinguished only by the productivity of their current match (or unmatched

state). We will refer to a match of productivity yi as a “type i match”, and call a worker or an

employer in a type i match a “type i agent”. Let Vi be the value of expected discounted utility

of a type i agent (either a worker or employer), and let V0 be the value of an unmatched agent.

Let Xk
ij be the value that a type i agent offers to a type j agent in order to form (or preserve) a

match of productivity yk. Specifically, Xk
ij includes the value of the new match plus the net side

6Alternatively, we can think of the matched pair without an outside production opportunity as being involved
in continual negotiations by which the expected value of side payments net out to be zero.
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payment type j agent receives. Three qualitatively different types of meetings can result from

the random matching process: (i) an unmatched employer and an unmatched worker meet and

draw a production opportunity, (ii) a matched agent and an unmatched agent meet and draw

a production opportunity, and (iii) a matched employer and a matched worker meet and draw

a production opportunity. We begin by describing the equilibrium outcome of the bargaining

for each of these three types of meetings, taking Vi and V0 as given. Later, we will analyze how

these values are determined in equilibrium.

(i). An unmatched employer meets an unmatched worker.

Suppose an unemployed worker and an employer with a vacancy draw an opportunity for

each to produce yk. Since both are unmatched, the outside option to each agent is V0. This

case is illustrated in Figure 1, where we have named the two agents involved in this meeting A

and B.

Figure 1: An unmatched employer meets an unmatched worker.

The bargaining unfolds as follows:

Subgame 1. With probability a half, the employer makes a take-it-or-leave-it offer Xk
AB to

the worker in order to maximize her own utility (which minimizes his partner’s utility) subject

to the constraint that his partner will accept. Then Xk
AB = V0, and the offer is accepted by the

partner.
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Subgame 2. With the same probability, the worker makes an offer Xk
BA = V0 to the employer

which is again accepted.

Let Πj be the expected payoff to agent j = A,B and Γj be her expected gain. For this case

we have ΠA = ΠB = 1
2V0 +

1
2(2Vk − V0) = Vk, and

ΓA = ΓB = Vk − V0. (6)

In this symmetric situation the expected value of the side payment is zero, and both unmatched

agents enjoy the same capital gains to becoming matched.

(ii). An matched agent meets an unmatched agent.

Suppose agent B, who is currently in a match of productivity yi with agent A, meets agent

C —who is unmatched— and they draw a productive opportunity yk. This situation is illustrated

in Figure 2.

Figure 2: A matched agent meets an unmatched agent.

The bargaining proceeds as follows:

Subgame 1. With probability a half, B makes a take-it-or-leave-it offer to A or C. This

offer involves payoffs as well as a proposal to engage in joint production. If B was to offer
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(continued) joint production to A, he would offer A her minimum acceptable payoff, Xk
BA = V0.

A would accept the offer and B’s payoff from continued production with A would be 2Vi − V0.

Alternatively, if B offers joint production to C, then he will offer C a payoff equal to her

minimum acceptable level, Xk
BC = V0. C will accept the offer and B’s payoff would be 2Vk−V0.

So clearly, if Vk > Vi then B offers C to produce together, she accepts, and the payoffs to A,

B and C will be V0, 2Vk − V0, and V0 respectively. Conversely, if Vi > Vk, then B offers A to

continue to produce together, she accepts, and the payoffs to A, B and C will be V0, 2Vi − V0,

and V0.

Subgame 2. With probability another half, A and C simultaneously make offers to B. Because

A’s outside option is the value of being unmatched, V0, the maximum A is willing to offer to

B to continue matching with productivity yi is 2Vi − V0, (this offer leaves A with a payoff

of V0). Similarly, the maximum C is willing to offer B in order to form a new match with

productivity yk is 2Vk − V0. Since A and C take each other’s offer as given, the competition

becomes Bertrand, so A offers B’s payoff to be Xi
AB = min(2Vi−V0, 2Vk−V0+ε), and C offers

B’s payoff to be Xk
CB = min(2Vi − V0 + ε, 2Vk − V0), where ε is an arbitrarily small positive

number. Thus, if Vk > Vi, then B accepts C’s offer to form a new match and the payoffs to A,

B and C will be V0, 2Vi − V0 and 2Vk − 2Vi + V0 respectively. On the other hand, if Vi > Vk,

then B accepts A’s offer to continue the existing match and the payoffs to A, B and C will be

2Vi − 2Vk + V0, 2Vk − V0 and V0.

Notice that regardless of whether it is B who makes the take-it-or-leave-it offer to A or C

(subgame 1), or A and C who make the offers to B (subgame 2), B leaves A for C for sure if

and only if Vk > Vi; that is when the value of the new match exceeds the value of the existing

match. The expected capital gains for this case are:⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ −(Vi − V0)

Vk − V0
Vk − Vi

⎤⎦ , if Vi < Vk. (7)

Notice that through the side payment of transferable utility, the expected gains to the agents

who form the new match is equal to the capital gains to their new partner instead of the own
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capital gains: the gains to B and C are Vk − V0 and Vk − Vi respectively.

On the other hand, if the value of the existing match exceeds the value of the new match,

Vi > Vk, then regardless of whether it is B or A and C who make the offers, B preserves the

match with A, and the expected gains are⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ −(Vk − V0)

Vk − V0
0

⎤⎦ , if Vk < Vi. (8)

Although the current match is not destroyed, the old partner, A, has to transfer the expected

value of utility Vk−V0 to B in order to persuade him to stay in the current match. The reason

for this transfer is that Vk − V0 is the expected gain for B to form a new match with C (see

(7)), so it is also the opportunity cost for B to continue the existing match.

(iii). A matched employer meets a matched worker.

Suppose agent B and agent C meet and draw a productive opportunity yk. The situation

now is that B is currently in a match of productivity yi with agent A, while C, is currently in

a match of productivity yj with agent D. This case is illustrated in Figure 3.

Figure 3: A matched employer meets a matched worker.

The bargaining procedure is as follows:
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Subgame 1. With probability a half, A and C simultaneously make offers to B. C also

makes a take-it-or-leave-it offer to his existing partner D, and this offer is contingent on his

offer to B being rejected. C makes the smallest acceptable offer to D, and since D has no other

productive opportunities, his proposed payoff to D is equal to the value of being unmatched,

V0. The resulting payoff to C from continuing to match with D is 2Vj − V0, which constitutes

the opportunity cost for C to form a new match. Thus the maximum C is willing to offer B

is 2Vk − (2Vj − V0). Because A’s opportunity cost of continuing to match is the value of being

unmatched, V0, the maximum A is willing to offer B is 2Vi−V0. Since this valuation is positive,

A will want to make sure that B finds her offer acceptable, and for this she must ensure that B’s

payoff is at least as large as V0. Therefore, A offers B’s payoff to be Xi
AB =Max{V0,Min[2Vi−

V0, 2Vk−(2Vj−V0)+ε]} and C offers B’s payoff to be Xk
CB =Min[2Vi−V0+ε, 2Vk−(2Vj−V0)]

for an arbitrarily small positive ε. Then, B will accept C’s offer to form the new match if and

only if 2Vk − (2Vj − V0) > 2Vi − V0, or Vk + V0 > Vi + Vj , i.e., the sum of the values of the new

match and the unmatched exceeds the sum of the values of the existing matches.

If Vk < Vi + Vj − V0, then A and B preserve their match and whether or not A may have

to offer B a side payment depends on whether the new potential match of B and C is better

or worse than C’s current match. If the new potential match is better (i.e. Vj < Vk), then C is

willing to offer B as much as 2Vk − (2Vj − V0) > V0 to convince him to leave A, and therefore

A has to “bid C away” by giving B a side payment equal to C’s valuation of B. However, if

Vk < Vj , then C is willing to offer B no more than V0 + 2 (Vk − Vj) < V0. But since B can

always get V0 on his own, in this case C’s offer poses no threat to A who only has to transfer

utility V0 to B to convince him to preserve their current match.

Subgame 2. With probability another half, B and D simultaneously make offers to C. B also

makes an offer to his existing partner, A, and this offer is contingent on his offer to C being

rejected. The analysis is identical to that of subgame 1 up to a relabelling so we omit it. (To

get the equilibrium payoffs simply replace A with D, B with C, and i with j in the payoffs of

subgame 1.)
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In the two possible sequences of bargaining (subgame 1 and subgame 2) we see that B and

C abandon their old partners to form a new match for sure if and only if the sum of the value

of the new match and the unmatched exceeds the sum of two existing matches. Without loss

of generality, assume Vj > Vi. Then the expected equilibrium gains are:⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−(Vi − V0)
Vk − Vj
Vk − Vi
−(Vj − V0)

⎤⎥⎥⎦ , if Vi + Vj − V0 < Vk (9)

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−(Vk − Vj)
Vk − Vj
Vk − Vi
−(Vk − Vi)

⎤⎥⎥⎦ , if Vi < Vk < Vi + Vj − V0 (10)

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0

Vk − Vi
−(Vk − Vi)

⎤⎥⎥⎦ , if Vi < Vk < Vj (11)

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ , if Vk < Vi. (12)

In (9), when B and C form a new match, the equilibrium expected side payment is such that

the expected gains to each of them is equal to the capital gains to the new partner, instead of

their own capital gain.7 In (10), although the existing matches continue, the old partner must

on average pay her current partner his opportunity cost of giving up the option to form a new

match. In (11), because the value of the new potential match is not as large as the value of

existing match between C and D, A has no need to pay a side payment to B on average in

order to persuade him to stay in the existing match. But in expectation, D still needs to pay

a side payment to C in order to preserve their valuable match. In (12) the value of the new

potential match between B and C is so small that on average A does not have to make a side

payment to B and D does not have to make a side payment to C.
7 If B and C were to form a new match and there were no side payements, then B would gain Vk − Vi and C

would gain Vk − Vj , but the equilibrium side payments imply that these gains are swaped: B gains Vk − Vj and
C gains Vk − Vi. So when a new match is formed, the agent who is currently in the better match enjoys a larger
capital gain.
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We summarize the main features of the bargaining outcomes in Proposition 1. The proof

of parts (a) and (b) follows from the previous discussion. Part (c) is proved in the Appendix

which also contains a graphical analysis of the bargaining procedure.

Proposition 1 For given value functions, the matching decisions and side payments are uniquely

determined in the symmetric competitive matching equilibrium through the sequence of bilateral

bargaining. Moreover,

(a) When two agents find an opportunity to form a new match, whether or not they form the

new match abandoning their existing matches (if any) depends on whether or not the sum of

the values of new match and the unmatched exceeds the total value of the existing matches.

(b) Through the side payment, the expected net gain to the agent who forms a new match is

equal to the capital gains of the new partner (instead of his own capital gains).

(c) The equilibrium outcomes (and expected outcomes) induced by the sequence of bilateral bar-

gaining lie in the core.

In the equilibrium, the agents expected payoffs satisfy the following Bellman equations:

rVi − V̇i = yi + α
NX
j=0

NX
k=1

njπk

h
φkij(Vk + skji − Vi) + (1− φkij)bzkiji

−α
NX
j=0

NX
k=1

njπk

hbφkij (Vi − V0) + (1− bφkij)zkiji− δ (Vi − V0)

for i = 1, ...,N , and

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπkφ
k
0j(Vk − V0 + skj0).

Here, type i agent’s choice of whether or not to form a new match with type j agent is repre-

sented by φkij ∈ [0, 1]. Type i agent’s value function also depends upon his existing partner’s

choices, represented by bφkij and bzkij . We are using skij to denote the net expected side payment
that the agent in the type i match who met an agent in a type j match offers her to convince
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her to form a new match with productivity yk. Note that skji = −skij . Also, we let zkij be the

expected side payment that type i agent offers his old partner to persuade her to stay in the

old match instead of forming a new type k match with an agent who is currently in a type j

match.

A competitive matching equilibrium with bargaining is characterized by a set of value func-

tions, side payments and match formation decisions (Vi, skij , z
k
ij , φ

k
ij)

N
i,j=0,k=1 together with a

population distribution of partnerships (ni)
N
i=0 such that: (i) Each agent with the opportunity

to make an offer chooses how much side payment to offer to her potential partners, and the

recipient of the offer chooses whether to accept or reject, in order to maximize her expected

discounted utility, taking the strategies of the other agents and the population distribution of

partnerships as given; (ii) The strategies of the other agents and the population distribution

are equilibrium strategies and distribution.

From part (a) of Proposition 1 we know that φkij = φkji, and that φ
k
ij = 1 if Vk+V0 > Vi+Vj ,

φkij = 0 if Vk+V0 < Vi+Vj , and φkij ∈ [0, 1] if Vk+V0 = Vi+Vj . And from part (b) of Proposition

1 we know that if φkij = 1, then Vk + skji − Vi = Vk − Vj . Also using the fact that bzkij = zkij andbφkij = φkij in a symmetric equilibrium, the value functions reduce to

rVi − V̇i = yi + α
NX
j=0

NX
k=1

njπk max
0≤φkij≤1

φkij (Vk + V0 − Vi − Vj)− δ (Vi − V0)

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπk max
0≤φk0j≤1

φk0j (Vk − Vj) .

Let us define the value of a match to the pair, λci = 2Vi for i = 0, 1, ..., N . Then we find the

value of the match to the pair satisfies:

rλci − λ̇
c
i = 2yi − δ(λci − λc0) + α

NX
j=0

NX
k=1

njπk max
0≤φkij≤1

φkij(λ
c
k + λc0 − λci − λcj) (13)

rλc0 − λ̇
c
0 = α

NX
j=0

NX
k=1

njπk max
0≤φk0j≤1

φk0j(λ
c
k − λcj). (14)
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The competitive matching equilibrium can be summarized by a list (λci , φ
k
ij , ni) for i, j = 0, ..., N

and k = 1, ..., N that satisfies (13), (14), and the laws of motion (1) and (2). Notice that the

equilibrium value of the match to the pair satisfies very similar conditions to the ones that the

shadow price of the match must satisfy for a social optimum. In fact, conditions (13) and (14)

would be identical to (4) and (5), were it not for the fact that in the optimality conditions there

is a “2” in front of the contact rate α. This difference is due to a search (or match-formation)

externality: in the decentralized economy, an individual agent does not take into account the

impact that her decisions to form and destroy matches have on the arrival of opportunities

of the other agents. Although the arrival rate of any new opportunity is constant here, the

arrival rate of a new opportunity with a particular type of agent is proportional to the measure

of agents of that type. Also, whether or not a new match is formed depends not only on the

quality of the new potential match, but also on the types of the existing matches. Therefore,

the relevant meeting rate is quadratic, because the total number of contacts between type i

agents and type j agents is equal to αninj .8

The relationship between the equilibrium match values and the planner’s shadow prices can

also be recasted as follows. Define µi = λi− λ0 and µci = λci − λc0. Then from (4), (5), (13) and

(14), we have:

(r + δ)µi − µ̇i = 2yi + 2α
NX
j=0

NX
k=1

njπk max
τkij ,τ

k
0j

h
τkij
¡
µk − µi − µj

¢
− τk0j

¡
µk − µj

¢i
(15)

2 (r + δ)µci − µ̇ci = 4yi + 2α
NX
j=0

NX
k=1

njπk max
φkij ,φ

k
0j

h
φkij(µ

c
k − µci − µcj)− φk0j(µ

c
k − µcj)

i
. (16)

Observe that if we modify the planner’s problem replacing r in (15) with r0 = 2r + δ, then

the first order conditions of this modified planner’s problem are identical to the equilibrium

conditions for the competitive matching equilibrium, except that the flow outputs yi all appear

multiplied by half for the planner. But a proportional change of all output levels yi just induces
8Mortensen (1982) shows that “mating models” in which an agent’s decisions affect other agents’ meeting

probabilities typically fail to achieve the socially optimal allocation due to a search externality.
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a proportional change in the paths of the µi’s, which does not change the choices of {τkij , τk0j}

nor the resulting distribution {ni}Ni=1. We summarize this result as follows:

Proposition 2 A competitive matching equilibrium exists. Moreover, all competitive matching

equilibria satisfy the first order conditions of a modified social planner’s problem, in which the

subjective discount rate, r, is replaced by the higher rate r0 = 2r + δ, where δ is the exogenous

destruction rate of any match. The allocation that solves the modified planner’s problem can be

decentralized as a competitive matching equilibrium.

4 A Special Case

Consider the model with a fixed population of employers and N = 2. For this case the flow

conditions (1) and (2) reduce to

ṅ2 = απ
¡
n20 + 2n0n1 + n21φ

¢
− δn2

ṅ1 = α (1− π)n20 − 2απn0n1 − 2απn21φ− δn1

ṅ0 = δ (n1 + n2) + απn21φ− αn20.

As long as the value function is increasing in the productivity of the current match (V0 < V1 <

V2), we know that φ20j = 1 for j = 0, 1 and that φ
k
i2 = 0 for i = 0, 1, 2 and k = 1, 2. To simplify

notation, we are letting φ = φ211 and π = π2 (thus π1 = 1− π). Figure 4 illustrates the worker

flows.

The following lemma characterizes the steady state distribution of matches taking as given

the separation decision φ.

Lemma 1 A unique steady state distribution of workers exists for any given φ ∈ [0, 1]. The

number of unemployed workers, n0, solves

£
αn20 − δ (1− n0)

¤
(δ + 2απn0)

2 − φαπ
£
2δ (1− n0)− α (1 + π)n20

¤2
= 0.
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Figure 4: Worker flows for the case of N = 2.

The number of workers employed in matches with productivity y1 is n1 =
2δ(1−n0)−α(1+π)n20

δ+2απn0
≡

f (n0), and the number of workers employed in matches with productivity y2 is n2 = 1−n0−n1.

Proof. See the Appendix.

In a stationary equilibrium the value functions satisfy:

rV2 = y2 − δ (V2 − V0)

rV1 = y1 − δ (V1 − V0) + αn0π (V2 − V1) + αn1πφ (V2 + V0 − 2V1)

rV0 = αn0 [π (V2 − V0) + (1− π) (V1 − V0)] + αn1π (V2 − V1) .

From Proposition 1 we know that φ = 1 with certainty if and only if V2 + V0 − 2V1 > 0. We

can use the Bellman equations to write this inequality as

y2
y1

> 2− α [πn1 + (1− π)n0]

r + δ + α (n0 + πn1)
, (17)

where n0 and n1 are the steady state numbers of matches characterized in Lemma 1. Since

the right hand side of (17) is bounded, it is clear that φ = 1 with certainty for y2/y1 large

enough. In these cases, the agents involved will destroy two middle-productivity matches in
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order to form a single high-productivity match whenever the opportunity arises. Perhaps more

surprisingly, notice that there is always some x > 0 such that φ = 1 for all y2/y1 > 2−x. That

is, there may be instances in which two middle-productivity matches are destroyed to form

a single high-productivity match even if this entails a reduction in current output. To find a

stationary equilibrium, let ni (φ) denote the steady state number of matches of productivity yi as

characterized in Lemma 1. Then define the best-response map Φ (φ) = y2
y1
+α[πn1(φ)+(1−π)n0(φ)]

r+δ+α[n0(φ)+πn1(φ)]
−

2. From this we see that φ = 1 is an equilibrium if Φ (1) > 0, φ = 0 is an equilibrium if Φ (0) < 0

and φ∗ ∈ [0, 1] is an equilibrium if Φ (φ∗) = 0. The map Φ is continuous on [0, 1], so there always

exists a stationary equilibrium. However, an equilibrium is not always unique, leading to the

possibility of coordination failure. We can show a sufficient condition for the uniqueness of

the steady state competitive equilibrium with N = 2 is that y2
y1
≤ 1+π

1−π or that
y2
y1
≥ 2 (thus

having π ≥ 1
3 guarantees uniqueness). In what follows, we continue the discussion for the case

of unique equilibrium.

Given (17), Proposition 2 tells us that the social planner chooses to destroy a pair of matches

of productivity y1 to create a single match of productivity y2 if and only if

y2
y1

> 2− 2α [πn1 + (1− π)n0]

r + δ + 2α (n0 + πn1)
, (18)

with n0 and n1 given by Lemma 1. Notice that also here, there are instances in which the planner

chooses to destroy two matches of productivity y1 to create a single match of productivity y2 at

the cost of reducing current output. Both in the competitive equilibrium and in the planner’s

solution the basic logic for this result goes as follows. Although unmatched agents generate

zero current output, they generate a positive expected discounted value of output. Hence for

some parametrizations (e.g. y2/y1 slightly below 2), the planner may choose to reduce current

output as a form of investment, in order to increase future output. From a static point of view,

this may come as a surprise since unmatched agents are unproductive; but from the planner’s

dynamic perspective, unmatched agents are a valued input in the matching process that makes

production possible. This intuition can be formalized by noticing that both (17) and (18)
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approach y2/y1 > 2 as r becomes large. The higher the degree of impatience, the less willing

the planner is to trade off current for future production.

From (17) and (18) we also learn that failing to internalize the search externality makes

atomistic agents less willing to destroy middle matches relative to the planner. The reason is

that the shadow value the planner assigns to a pair of unmatched agents is larger than their value

in the competitive equilibrium (because the planner also imputes as part of their return the fact

that the unmatched pair helps other agents climb the productivity ladder). Alternatively, recall

that from Proposition 2 we know that the competitive matching equilibrium corresponds to a

modified planner’s economy with higher discount rate r0 = 2r+δ. Thus the modified planner is

less willing to trade off current for future output. Consequently, the modified planner (or agents

in the competitive matching equilibrium) is less willing to trade two matches of productivity

y1 for two agents in a match of productivity y2 and two unmatched agents. Figure 5 illustrates

the difference between the relevant destruction margins in the efficient and the competitive

solutions. On the horizontal axis is r, a measure of impatience, and on the vertical axis y2/y1,

the relevant measure of inequality in instantaneous productivities. Notice that the (n0, n1) pair

that appears in (17) is identical to that in (18) and is independent of y1, y2 and r. (See Lemma

1.) The solid lines with the higher and lower intercepts are conditions (17) and (18) at equality

respectively. As in the competitive economy, we know that for the social planner’s economy

τ20j = 1 for j = 0, 1; that τ
k
i2 = 0 for i = 0, 1, 2 and k = 1, 2 and therefore we use τ to denote

τ211, the only nontrivial decision.

Double breaches occur in the competitive equilibrium only for parametrizations that lie

above the higher solid line. In contrast, the planner implements double breaches for para-

metrizations that lie above the lower solid line. For any given degree of impatience r, the

competitive and the efficient allocations coincide only if the flow productivity differential y2/y1

is either large enough (i.e. above the higher solid line) or small enough (below the lower solid

line). For intermediate values (i.e. those that lie between the two solid lines) the allocations

differ: relative to the efficient benchmark, matches of productivity y1 are too stable in the
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Figure 5: Destruction regions for the case with N = 2.

competitive economy.

It is possible to design policies that bring the competitive allocation in line with the plan-

ner’s. For example, suppose every agent receives a payoff b > 0 while unmatched, and that this

transfer is paid for by levying a tax T from every match.9 The balanced-budget condition is

bn0 = T (n1 + n2). The Bellman equations for the competitive economy become

rV̂2 = y2 − T − δ(V̂2 − V̂0)

rV̂1 = y1 − T − δ(V̂1 − V̂0) + αn0π(V̂2 − V̂1) + αn1πφ(V̂2 + V̂0 − 2V̂1)

rV̂0 = b+ αn0

h
π(V̂2 − V̂0) + (1− π) (V̂1 − V̂0)

i
+ αn1π(V̂2 − V̂1).

Notice that for a given destruction decision φ, the stationary distribution of agents across

states is still as described in Lemma 1. However, now φ = 1 with certainty if and only if
9For the discussion of this section we will ignore the issue of exactly how a government may be able to collect

taxes from agents in a random matching economy, as well as why the same government is unable to facilitate
the matching process.
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V̂2 + V̂0 − 2V̂1 > 0, which can be rewritten as

y2 − T − b

y1 − T − b
> 2− α [πn1 + (1− π)n0]

r + δ + α (n0 + πn1)
.

Using the budget constraint the above condition becomes

y2 − T
n0

y1 − T
n0

> 2− α [πn1 + (1− π)n0]

r + δ + α (n0 + πn1)
. (19)

Observe that if we let T = T ∗, where

T ∗ =
αn0 (r + δ) [πn1 + (1− π)n0]

[r + δ + 2α (n0 + πn1)] (r + δ + απn0)
y1,

then (18) and (19) coincide. In other words, the compensation b∗ = n1+n2
n0

T ∗ makes agents

internalize the search externality in the competitive matching equilibrium and implements the

same destruction decisions as the planner’s. Quite intuitively, note that b∗ approaches zero as

either r→∞ or y1 → 0.

The model has clear predictions regarding individual agents’ employment histories and the

various attributes of different types of jobs. For example, a job of productivity y2 is not

only better paid, but also more stable than a job of productivity y1. The first observation is

immediate because y2 > y1 (and, in fact, also V2 > V1). The second follows from the fact that

the expected time until a worker gets displaced is 1δ for a job of productivity y2 and
1

δ+απ(n0+φn1)

for a job of productivity y1. Displacement from a job with productivity i is associated with

a capital loss equal to Vi − V0, and it takes workers some time to climb back up to a job of

productivity equal or higher to the one they were displaced from. For example, suppose a

worker is displaced from a job of productivity y1 (i.e. his match is either hit by the exogenous

destruction shock δ, or his employer fires him in order to form a new match of productivity y2

with another worker). The expected time it takes this worker to find a job at least as good as

the one he lost is 1
α(n0+φπn1)

. Note that the degree of inequality (say as measured by Vi − Vj)

as well as the shapes of the various hazard rates depend crucially on the separation decisions φ.

Therefore, we can expect these variables to vary systematically across economies with different

labor-market policies that affect this endogenous destruction margin.

24



We can also construct the theoretical counterparts to the usual empirical measures of job

and worker flows. Let JC, JD, WR and WT denote job creation, job destruction, worker

reallocation and worker turnover in the stationary equilibrium. Then we have

JC = α (n0 + πn1)n0

JD = απ (n0 + φn1)n1 + δ (n1 + n2)

WR = αn0n0 + 2αn0n1π + αn1n0π + 2αn1n1πφ+ δ (n1 + n2)

WT = αn0n0 + 2αn0n1π + 2αn1n0π + 3αn1n1πφ+ δ (n1 + n2) .

Job creation includes all those unmatched employers who meet and start productive relation-

ships with either unmatched or matched workers. Job destruction consists of all those filled

jobs which become unfilled. This occurs every time an employed worker quits to form a better

match with another employer and also when the match is destroyed for exogenous reasons. It

can be verified that, naturally, JC − JD = 0 since the net employment change is zero in the

steady state. Worker reallocation counts the number of workers who change state. In the first

term are the number of unemployed workers who fill vacant jobs. In the second term are the

unemployed workers who contact a filled job and get hired. The “2” multiplying this term

accounts for the change of state of the previously employed worker who gets displaced. The

third term represents the number of previously employed workers who contact a vacant job

and quit to form a more productive relationship. The fourth term accounts for the number of

workers who are employed and quit to form a new match with an employer who was previously

matched to another worker, as well as for the corresponding displaced workers. The number of

workers who change state (i.e. become unemployed) for exogenous reasons are accounted for

in the last term. The measure of worker turnover counts the total number of accessions and

separations over all employers.
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Notice that the gross job and worker flows satisfy:

WR = JC + JD + απn0n1 + απn1n1φ

WT = WR+ απn0n1 + απn1n1φ.

In the model —as in the data— gross worker reallocation is larger than gross job reallocation,

JC + JD. Instances of “replacement hiring” are behind this discrepancy, since job creation

and destruction are unchanged when a firm fires a worker to replace him with an unemployed

one. But also, in economies in which φ > 0, there is yet another reason for worker reallocation

in excess of job reallocation, since when a matched employer and an employed worker decide

to form a new match the worker reallocation count increases by 2 while job reallocation only

increases by 1 (job creation is unchanged by this transition).10 Workers who experience job-to-

job transitions get counted twice in the aggregate measure of worker turnover, so the number

of job-to-job transitions, απn0n1 + απn1n1φ, is the amount by which worker turnover exceeds

worker reallocation.

5 Employment Protection

In this section we introduce two broad sets of employment protection policies. The first consists

of policies specifying that the agent who breaks up a match is to compensate her old partner

for the loss she inflicts on him. The second set of policies differ in that the party that initiates

the separation must pay the “government” a firing tax, and the government then offers the

displaced agent a compensation.

5.1 Firing Compensation

We begin by studying the bargaining procedure in the presence of a policy that specifies the

agent who leaves a relationship must pay compensatory damages to the old partner. Because
10Several recent empirical studies argue that distinguising between job and worker flows is essential for a

complete characterization of aggregate labor-market dynamics. See Fallick and Fleischman (2001), Nagypál
(2003) and Stewart (2002).
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firing compensation are a pure transfer among partners, it does not change the total surplus

of the alternative matches of all the members involved. One expects that the Coase Theorem

will hold, so that the decision to form a new match continues to be privately efficient; i.e.

efficient for all the parties involved in the meeting, given the value functions. More subtle is

the effect that firing compensation will have on the value functions themselves. Consider the

single-breach situation illustrated in Figure 2 and let T k
i0 ≤ Vi − V0 be the compensation that

B must pay A should he leave to form a new productive relationship with C. As usual, the

bargaining procedure is composed of two subgames.

Subgame 1. With probability a half, B makes a take-it-or-leave-it offer specifying con-

tinuation payoffs as well as a proposal to engage in joint production to either A or C. If B

was to offer continued joint production to A, he would offer A her minimum acceptable payoff,

Xk
BA = V0 + T k

i0. Agent A would accept the offer and B’s payoff from continued production

with A would then be 2Vi − V0 − T k
i0. Alternatively, if B was to offer joint production to C

he would offer her Xk
BC = V0, her minimum acceptable continuation value. C would accept

this offer and B’s payoff after paying the firing compensation to A would be 2Vk − V0 − T k
i0. If

Vk > Vi then B will choose to leave A and form a new match with C. The payoffs to A, B and

C will be V0 + T k
i0, 2Vk − V0 − T k

i0, and V0 respectively. Alternatively, if Vk < Vi, then B will

offer continued production to A and the payoffs to A, B and C will be V0+T k
i0, 2Vi− V0− T k

i0,

and V0.

Subgame 2. With probability another half, A and C simultaneously make offers to B.

Since A’s outside option is now V0 + T k
i0, she is willing to offer B no more than 2Vi − V0 − T k

i0.

On the other hand, the maximum C is willing to offer B is 2Vk − V0. Therefore A offers B

a continuation payoff Xi
AB = max

£
min

¡
2Vi − V0 − T k

i0, 2Vk − V0 − T k
i0 + ε

¢
, V0
¤
and C’s offer

is for B’s continuation payoff to be Xk
CB = min

¡
2Vk − V0 − T k

i0, 2Vi − V0 − T k
i0 + ε

¢
where ε is

an arbitrarily small positive number.11 If Vk > Vi then B forms a new match with C and the
11The compensation T k

i0 appears subtracting from the second argument of the “min” in Xk
AB and from the

first argument of the “min” in Xk
CB because when C transfers 2Vk − V0 to B, if B matches with C he only gets

2Vk − V0 − T k
ij after settling the firing compensation with A. The “max” in Xk

CB ensures that A never offers B
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payoffs to A, B and C are V0+T k
i0, 2Vi−V0−T k

i0, and 2Vk−(2Vi − V0) respectively. Conversely,

if Vk < Vi then B stays matched to A and the payoffs to A, B and C are 2Vi−
¡
2Vk − V0 − T k

i0

¢
,

2Vk − V0 − T k
i0, and V0 respectively.

In both subgames B leaves A for sure if and only if Vk > Vi. In this case the expected

capital gains are ⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ − ¡Vi − V0 − T k

i0

¢
Vk − V0 − T k

i0

Vk − Vi

⎤⎦ .
If V0 + T k

i0 ≤ Vk ≤ Vi, then A and B preserve their match. The expected capital gains by⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ − ¡Vk − V0 − T k

i0

¢
Vk − V0 − T k

i0

0

⎤⎦ .
If Vk < V0+T k

i0, then B remains matched to A and is unable to extract a positive expected side

payment from her: all agents’ continuation payoffs remain unchanged and nobody experiences

capital gains or losses. Note that if the policy requires the partner who leaves to pay fully

compensatory damages to her old partner, i.e. if T k
i0 = Vi − V0 for all i and k, then ΓB = ΓC =

Vk − Vi and ΓA = 0 in those cases in which B chooses to form a new match with C. In those

cases in which V0+Ti0 ≤ Vk ≤ Vi , A transfers ΓB = Vk−Vi to B and persuades him to preserve

their current match.

Next, we consider the double-breach situation illustrated in Figure 3 and let T k
ij ≤ Vi − V0

be the compensation that B must pay A should he leave to form a new productive relationship

with C. Similarly, T k
ji ≤ Vj − V0 is the compensation that C must pay D should she leave to

form a new productive relationship with B.

Subgame 1. With probability a half, A and C simultaneously make offers to B. C also

makes a take-it-or-leave-it offer to his existing partner D, and this offer is contingent on his

offer to B being rejected. C makes the smallest acceptable offer to D, namely V0 + T k
ji. The

resulting payoff to C from continuing to match with D is 2Vj − V0 − T k
ji, which constitutes

the opportunity cost for C to form a new match. Thus the maximum payoff C is willing to

a continuation payoff below V0 even in instances where C’s valuation of B, i.e. 2Vk − V0, is less than V0 + T k
i0.
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assign to B is 2Vk − T k
ij − T k

ji − (2Vj − V0 − T k
ji). If B “fires” A, then A’s continuation payoff

is V0 + T k
ij . Thus the maximum A is willing to offer B is 2Vi − V0 − T k

ij . Since this valuation is

positive (recall that T k
ij ≤ Vi − V0), A will want to make sure that B finds her offer acceptable,

and for this she must ensure that B’s payoff is at least as large as V0. Therefore, A offers B a

continuation payoff Xi
AB =Max{V0,Min[2Vi−V0−T k

ij , 2Vk−(2Vj−V0)−T k
ij+ε]} and C offers

B’s payoff to be Xk
CB =Min[2Vk − (2Vj − V0)− T k

ij , 2Vi − V0 − T k
ij + ε] for an arbitrarily small

positive ε. Then, B will accept C’s offer to form the new match if and only if Vk+V0 > Vi+Vj .

Subgame 2. With probability another half, B and D simultaneously make offers to C. B

also makes an offer to his current partner A, and this offer is contingent on his offer to C being

rejected. This subgame is identical to subgame 1 up to a relabeling so we omit the analysis.

In the two possible sequences of bargaining (subgame 1 and subgame 2) B and C abandon

their old partners to form a new match for sure if and only if the sum of the value of the new

match and the unmatched exceeds the sum of two existing matches. The equilibrium expected

gains are: ⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−(Vi − V0 − T k

ij)

Vk − Vj − T k
ij

Vk − Vi − T k
ji

−(Vj − V0 − T k
ji)

⎤⎥⎥⎦ , if Vi + Vj − V0 < Vk

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−max(Vk − Vj − T k

ij , 0)

max(Vk − Vj − T k
ij , 0)

max(Vk − Vi − T k
ji, 0)

−max(Vk − Vi + T k
ji, 0)

⎤⎥⎥⎦ , if Vk ≤ Vi + Vj − V0.

If Vk < Vj + T k
ij , then B remains matched to A and is unable to use his meeting with C to

extract a side payment from A. Similarly, C is unable to extract a side payment from D if

Vk < Vi + T k
ji. Note that if the policy requires the partner who breaks the match to pay fully

compensatory damages to her old partner, i.e. if T k
ij = Vi − V0 for all i, j and k, then A and

D never suffer any capital losses (or equivalently, B and C never experience capital gains). By

construction, the policy ensures A and D suffer no losses when their matches are destroyed by

their partners, but as it turns out, this policy will also spare them from having to make side
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payments to prevent their respective partners from leaving in those cases in which B and C

have the option of forming a match of type k with Vk ≤ Vi + Vj − V0.

To conclude, we return to the value functions to see how the policies affect the equilibrium

payoffs associated with each state:

rVi − V̇i = yi + α
NX
j=0

NX
k=1

njπk

h
φkij(Vk − Vj − T k

ij) + (1− φkij)bzkiji

−α
NX
j=0

NX
k=1

njπk

hbφkij(Vi − V0 − T k
ij) + (1− bφkij)zkiji− δ (Vi − V0)

for i = 1, ...,N , and

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπkφ
k
0j (Vk − Vj) .

In a symmetric equilibrium bφkij = φkij , and these expressions reduce to (13) and (14). We

summarize this result as follows.

Proposition 3 Policies that require the partner who breaks the relationship to (either partially

or fully) compensate the old partner are completely neutral: they have no effect on payoffs nor

on match formation and dissolution decisions.

Thus firing compensation not only has no effect on the new match formation decisions given

the value functions, but also has no effect on the value functions themselves.

5.2 Firing Taxes

We now report the main results for the case of a policy specifying that the agent who leaves

a relationship must pay a tax. (See the Appendix for details.) We still use T k
ij ≤ Vi − V0 to

denote the tax that an agent currently in a type i match who forms a new type k match with an

agent who was previously in a type j match must pay for separating from his current partner.

The difference with the previous case is that this “firing tax” is paid out to some external party

(e.g. a “government”); i.e. it is not directly transferred to the old partner. We allow for the
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possibility that the breached against partner receives compensation Sk
ij ≤ Vi − V0 from the

government. The key is that although T k
ij and S

k
ij will typically be related through some overall

government budget constraint, they need not be equal to each other.12

Firing taxes will in general alter the match formation and destruction decisions. Summariz-

ing, in the single-breach situation of Figure 2, B will destroy his match with A to form a new

one with C if and only if

2Vk + V0 − (T k
i0 − Sk

i0) > 2Vi + V0.

And in the double-breach situation of Figure 3 B and C leave their current partners if and only

if

2Vk + 2V0 − (T k
ij + T k

ji − Sk
ij − Sk

ji) > 2Vi + 2Vj .

Imposing high firing taxes on the agents who “fire” their partners tends to make existing matches

more stable while generous government transfers to the displaced agents makes existing matches

more likely to be destroyed. What matters for the creation and destruction decisions is how

much all the members involved in a meeting (including the agents who get fired) pay in net

to the government. So if the government increases the payments of the private agents, say by

imposing a more stringent administrative procedure for firing, then the simultaneous creation

(of new matches) and destruction of (old) matches will decrease further. To conclude, turn to

the value functions to see how the policies affect the equilibrium payoffs associated with each

state. Using the equilibrium break up rules and focusing on a symmetric equilibrium bφkij = φkij ,

the Bellman equations are:

rVi − V̇i = yi − δ (Vi − V0)

+α
NX
j=0

NX
k=1

njπk max
0≤φkij≤1

φkij

∙
Vk + V0 − Vi − Vj −

1

2
(T k

ij + T k
ji − Sk

ij − Sk
ji)

¸

rV0 − V̇0 = α
NX
j=0

NX
k=1

njπk max
0≤φk0j≤1

φk0j

∙
Vk − Vj −

1

2
(T k

j0 − Sk
j0)

¸
.

12For example we may have Skij > T k
ij if the government collects other taxes in addition to the firing taxes, or

Skij < T k
ij if the proceeds from the firing taxes are also used to pay for other programs.
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The policy that requires each agent who breaks a match to directly compensate her old partner

corresponds to the special case with T k
ij = Sk

ij for all i, j and k and is completely neutral as

shown previously.13

6 Free Entry

So far we have been assuming constant (and equal) populations of employers and workers. In

this section we generalize the formulation by allowing for free entry of employers. Let mj be

the number of employers in state j; we still use ni to denote number of workers in state i. Since

there is one-to-one matching we have mi = ni for all i ≥ 1 but n0 (the number of unemployed

workers) may be larger or smaller than m0 (the number of vacant employers). We assume that

a worker contacts an employer in state j at rate αmj , while an employer contacts a random

worker in state i at rate αni.14

The measure of workers in each state evolves according to:

ṅi = απi

NX
j=0

NX
k=0

njmkτ
i
jk − αni

NX
j=0

NX
k=1

mjπkτ
k
ij

−αmi

NX
j=0

NX
k=1

njπkτ
k
ji − δni (20)

ṅ0 = α
NX
i=1

NX
j=1

NX
k=1

nimjπkτ
k
ij + δ

NX
j=1

nj − αn0m0

NX
k=1

πkτ
k
00. (21)

The first term on the right hand side of (20) is the flow of new matches of productivity yi

created by all types of workers and employers. The second term is the total flow of matches
13The idea that government-mandated transfers between the employer and the worker can be offset by private

contracts between the parties goes back to Lazear (1990). Lazear also notes that severance pay effects are neutral
only when the payment made by the employer is received by the worker, and not if third-party intermediaries
receive or make any of the payments.
14This formulation implies that the total number of meetings is given by a quadratic matching technology

ξ (Ne, Nw) = αNeNw, where Ne is the total numbers of employers and Nw the total number of workers. In our
formulation, Nw = 1 and Ne = 1 − n0 + m0. We have also considered and will be reporting results for the
case in which the aggregate meeting technology is instead given by a function ξ (Ne, Nw) which is monotonic in
both arguments and homogeneous of degree one. In this alternative formulation an employer contacts a random
worker at rate α (Ne) = ξ (1, 1/Ne) and worker contacts a random employer at rate Neα (Ne). But note that
even if we adopt a matching technology that is linearly homogeneous in the aggregate populations, the matching
process will still be effectively quadratic in the relevant stocks of workers and employers, (ni)

N
i=0 and (mj)

N
j=0.
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with productivity yi destroyed endogenously when the worker “quits” to form a new match

with another employer. The third term represents those matches with productivity yi that are

destroyed when the employer “fires” the worker in order to form a new match with another

worker. The last term is the flow of matches dissolved exogenously. On the right hand side

of (21), the first term is the flow of workers who are displaced when their employers decide to

break up their current match to form a new match with another worker. The workers whose

matches are destroyed exogenously are accounted for by the second term. The last term is the

flow of new matches created by unemployed workers and unmatched employers.

Before turning to the competitive matching equilibrium we pose the planner’s problem. The

planner chooses τkij ∈ [0, 1] and m0 ≥ 0 to maximize the discounted value of aggregate outputZ
e−rt

"
NX
i=1

2yini −C (m0)

#
dt

subject to the flow constraints (20) and (21) and initial conditions for n0 and ni and mi for

i = 1, ..., N . Note that while unmatched employers incur a cost C (m0), with C 0 > 0 and

C 00 ≥ 0.15 Letting λi be the shadow price associated with the flow equation of the ith state, the

Hamiltonian corresponding to the planner’s problem is

H =
NX
i=1

2yini − C (m0)− δ
NX
i=1

ni (λi − λ0)

+α
NX
i=0

NX
j=0

NX
k=1

nimjπkτ
k
ij (λk + λ0 − λi − λj) .

The optimality conditions are:

τkij

⎧⎨⎩
= 1 if λk + λ0 > λi + λj
∈ [0, 1] if λk + λ0 = λi + λj
= 0 if λk + λ0 < λi + λj

(22)

and

C 0 (m0) ≥ α
NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi) (23)

15 In Pissarides (2000), C (m0) is the “cost of posting vacancies m0”.
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with “=” if m0 > 0. Condition (22) is familiar from the previous analysis. The left hand side of

condition (23) is the marginal cost of an unmatched employer (or the marginal cost of “opening

a vacancy”), and the right hand side is the expected return from having an additional vacancy

(note that λk − λi is the capital gain to the planner from creating a new match of quality yk

by matching a vacancy to a worker previously in a match of quality yi, while αniπkτki0 is the

probability that this capital gain is realized). Focusing on a solution with a positive measure

of unmatched employers, (23) can be rewritten as16

C 0 (m0) = α
NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi) . (24)

For i ≥ 1 the Euler equations are:

rλi − λ̇i = 2yi − δ (λi − λ0) + α
NX
j=1

NX
k=1

njπk(τ
k
ij + τkji) (λk + λ0 − λi − λj)

+αm0

NX
k=1

πkτ
k
i0 (λk − λi) + αn0

NX
k=1

πkτ
k
0i (λk − λi) .

The right hand side of this condition is readily interpreted as the flow return to the planner from

allocating an additional worker to a match of quality yi. A (worker in a) match of type i yields

output 2yi and a capital loss λi − λ0 in the event of an exogenous break-up. The remaining

terms represent the expected capital gains from matching that are generated by an additional

match of type i. An additional match of quality i generates expected capital gains both directly,

when it climbs up the productivity ladder itself, and indirectly, by increasing the probability

that an agent in a match of quality j will meet an agent in a match of quality i and climb up the
16For the constant-returns matching case (20), (21), H and (22) are as given in the text, while condition (24)

becomes

C0 (m0) = α
NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi) + α0 (θ)m0

NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi)

+α0 (θ)
NX
i=0

NX
j=1

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) .

In all these expression α should be interpreted as α (Ne), an employer’s contact rate. The last term represents
“congestion externalities”.
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productivity ladder himself. Naturally, the planner internalizes both these returns. (As we saw

in the model with fixed populations, only the direct return enters the agent’s calculations in

the decentralized economy.) The fourth term represents the expected capital gain that accrues

to the planner when the worker in a match of type i meets an unmatched employer. Similarly,

the fifth term is the expected capital gain to the planner from having the employer in a match

of type i meet an unemployed worker. Similarly, for i = 0 we have:

rλ0 − λ̇0 = αm0

NX
k=1

πkτ
k
00 (λk − λ0) + α

NX
j=1

NX
k=1

njπkτ
k
0j (λk − λj) .

The right hand side can again be interpreted as the marginal return of an unemployed worker.

The first term is the expected capital gain the unemployed worker generates in the event she

matches with an unmatched employer. The second term is the expected capital gain in the

event she matches with a matched employer.17 Using (24), which holds as long as m0 > 0, and

collecting terms we arrive at:18

rλ0 − λ̇0 = −C 0 (m0) + α (m0 + n0)
NX
k=1

πkτ
k
00 (λk − λ0)

+α
NX
j=1

NX
k=1

njπk(τ
k
0j + τkj0) (λk − λj) .

From (22) we see that τkij = τkji except possibly for the case of randomized strategies. Using this

symmetry (mi = ni for i ≥ 1), we can write the Euler equations together with the optimality
17For the constant-returns matching case the Euler equation associated with ni is as in the text, while the one

associated with n0 is

rλ0 − λ̇0 = αm0

NX
k=1

πkτ
k
00 (λk − λ0) + α

NX
j=1

NX
k=1

njπkτ
k
0j (λk − λj)

−α0 (θ)m0

NX
i=0

NX
k=1

niπkτ
k
i0 (λk − λi)

−α0 (θ)
NX
i=0

NX
j=1

NX
k=1

ninjπkτ
k
ij (λk + λ0 − λi − λj) .

18This expression remains unchanged in the formulation with constant returns to scale.
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conditions (22) more compactly as

rλi − λ̇i = 2yi − δ (λi − λ0) + α (m0 + n0)
NX
k=1

πk max
0≤τki0≤1

τki0 (λk − λi)

+2α
NX
j=1

NX
k=1

njπk max
0≤τkij≤1

τkij (λk + λ0 − λi − λj) (25)

rλ0 − λ̇0 = −C 0 (m0) + α (m0 + n0)
NX
k=1

πk max
0≤τk00≤1

τk00 (λk − λ0)

+2α
NX
j=1

NX
k=1

njπk max
0≤τk0j≤1

τk0j (λk − λj) . (26)

Conditions (25) and (26) are very similar to the first order conditions for the model with a fixed

number of employers. In particular, note that (25) and (26) reduce to (4) and (5) respectively

if we set C 0 = 0 and m0 = n0. But more generally, in this formulation we have an additional

unknown, m0, and (24) provides the additional optimality condition.

Next, we characterize the competitive matching equilibrium using the bargaining procedure

we introduced in Section 3. Figures 1, 2 and 3 still describe the basic types of meetings.

(i). An unmatched employer meets an unemployed worker.

We begin with the situation illustrated in Figure 1, that is a bargaining situation in which

neither the employer nor the worker have outside opportunities. Agent A is an unemployed

worker, B an unmatched employer and Mk represents the value of a match of type k in the

competitive matching equilibrium. We use V0 and J0 to denote the values of an unemployed

worker and an unmatched employer respectively.As usual, the bargaining sequence is composed

of:

Subgame 1. With probability one half, the worker makes a take-it-or-leave-it offer Xk
AB = J0

which is accepted by the employer.

Subgame 2. With probability one half, the employer makes a take-it-or-leave-it offerXk
BA = V0

which is accepted by the worker.

The expected payoffs to the worker A and the employer B are ΠA = V0+
1
2 (Mk −M0) and
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Figure 6: An unmatched employer meets an unemployed worker.

ΠB = J0 +
1
2 (Mk −M0) respectively, where M0 = V0 + J0. So when A and B first meet and

form a match, their expected capital gains are

ΓA = ΓB =
1

2
(Mk −M0) .

We think of a matched pair with no outside production opportunities as being involved in

continuous negotiations of the type illustrated by Figure 1. Output is continuously divided

among the partners in such as way so that the worker’s continuation payoff is

Vk = V0 +
1

2
(Mk −M0)

and the employer’s is

Jk = J0 +
1

2
(Mk −M0) .

(ii). An matched employer meets an unemployed worker.

Employer B, who is currently hiring worker A in a match with productivity yi, meets an

unemployed worker C and they draw a production opportunity yk. This situation is illustrated

in Figure 7.

Subgame 1. With probability a half, B makes a take-it-or-leave-it offer specifying continuation

payoffs as well as a proposal to engage in joint production to either A or C. If B was to offer

(continued) joint production to A, he would offer A her minimum acceptable payoff, Xk
BA = V0.

37



Figure 7: A matched employer meets an unemployed worker.

Worker A would accept the offer and B’s payoff from continuing the match with A would be

Mi − V0. Alternatively, if B offers joint production to worker C, then he would also offer C

her minimum acceptable continuation payoff Xk
BC = V0; C would accept and B’s continuation

payoff from forming a new match with C would be Mk − V0. Thus B will fire A to form a new

type k match with C if and only if Mk > Mi. In this case the payoffs to A, B and C are V0,

Mk − V0 and V0 respectively. Conversely, if Mk < Mi, then B offers continued production to

A, she accepts and the payoffs to A, B and C are V0, Mi − V0 and V0.

Subgame 2. With probability another half, A and C simultaneously make offers to B. Worker

A offers B’s payoff to be Xi
AB = min (Mi − V0,Mk − V0 + ε) and worker C offers B’s payoff

to be Xk
CB = min (Mk − V0,Mi − V0 + ε), where ε is an arbitrarily small positive number. If

Mk > Mi then B accepts C’s offer to form a new match, and the payoffs to A, B and C are

V0, Mi − V0, and Mk −Mi + V0. Conversely, if Mk < Mi then B accepts A’s offer to continue

their match and the payoffs to A, B and C are Mi −Mk + V0, Mk − V0 and V0 respectively.

In both subgames B fires A to form a new match with C if and only if Mk > Mi. The
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expected capital gains are⎡⎣ ΓAΓB
ΓC

⎤⎦ =
1

2

⎡⎣ − (Mi −M0)
Mk −M0

Mk −Mi

⎤⎦ if Mk > Mi (27)

⎡⎣ ΓAΓB
ΓC

⎤⎦ =
1

2

⎡⎣ − (Mk −M0)
Mk −M0

0

⎤⎦ if Mk < Mi. (28)

(iii). An unmatched employer meets an employed worker.

Worker B who is employed with A meets C, an unmatched employer. The analysis of this

case amounts to a relabelling of the previous one so we just note that the expected capital gains

ΓA, ΓB and ΓC are given by (27) and (28).

(iv). A matched employer meets an employed worker.

Suppose that worker B and employer C meet and have the option to form a new match of

type k. The circumstances are now that B is currently in a match of type i with employer A,

and C is in a match of type j with worker D. This situation is illustrated in Figure 8.

Figure 8: An employed worker meets a matched employer.

Subgame 1. With probability a half, the two employers A and C simultaneously make offers

to B. Employer C also makes a take-it-or-leave-it offer to her current worker D, and this offer
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is contingent on her offer to worker B being rejected. By the usual arguments, A offers B’s

continuation payoff to be Xi
AB = max {min [Mi − J0,Mk − (Mj − V0) + ε] , V0}. Similarly, C

offers B’s continuation payoff to be Xk
BC = min [Mk − (Mj − V0) ,Mi − J0 + ε].

Subgame 2. With probability a half, the two workers B and D simultaneously make offers to

employer C. Worker B also makes a take-it-or-leave-it offer to her employer A. The analysis

follows closely that of subgame 1.

In both subgames B and C leave their current partners to form a new match of type k

if and only if Mi +Mj −M0 < Mk. Suppose, without loss of generality, that Mi < Mj . If

Mj < Mk < Mi +Mj −M0, then B and C stay in their current matches and extract strictly

positive expected side payments from their respective partners. If Mi < Mk < Mj , then the

existing matches are preserved but only C is able to extract a strictly positive expected side

payment from her partner. This meeting does not generate enough bargaining power for B to

be able to extract resources from A. Finally, if Mk < Mi, then B and C stay in their current

matches and neither of them is able to benefit from the meeting. The equilibrium expected

gains are: ⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =
1

2

⎡⎢⎢⎣
− (Mi −M0)
Mk −Mj

Mk −Mi

− (Mj −M0)

⎤⎥⎥⎦ , if Mi +Mj −M0 < Mk

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =
1

2

⎡⎢⎢⎣
− (Mk −Mj)
Mk −Mj

Mk −Mi

− (Mk −Mi)

⎤⎥⎥⎦ , if Mi < Mk < Mi +Mj −M0

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =
1

2

⎡⎢⎢⎣
0
0

Mk −Mi

− (Mk −Mi)

⎤⎥⎥⎦ , if Mi < Mk < Mj

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ , if Mk < Mi.

Given the equilibrium outcomes of the bargaining procedure, in the equilibrium the ex-
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pected payoffs to an unemployed worker and an unmatched firm satisfy the following Bellman

equations:

rV0 = αm0

NX
k=1

πkφ
k
00

Mk −M0

2
+ α

NX
j=1

NX
k=1

njπkφ
k
0j

Mk −Mj

2
(29)

rJ0 = −c+ αn0

NX
k=1

πkφ
k
00

Mk −M0

2
+ α

NX
j=1

NX
k=1

njπkφ
k
j0

Mk −Mj

2
. (30)

Here each employer who posts a vacancy pays c = C 0 (m0), while filled employers do not have to

pay anything (say because production itself is free advertisement to attract workers).19 As usual,

φkij denotes the probability with which a match of type i and a match of type j are destroyed

to form a new match of type k in the equilibrium outcome of the bargaining procedure. For

i = 1, ..., N and letting wi denote the worker’s wage while employed in a match of type i, the

value of a worker in a match of type i is

rVi = wi − δ (Vi − V0)

+αm0

NX
k=1

πk

∙
φki0

Mk −M0

2
+ (1− φki0)

Mk −M0

2

¸

−αn0
NX
k=1

πk

∙
φk0i

Mi −M0

2
+ (1− φk0i)

Mk −M0

2

¸

+α
NX
j=1

NX
k=1

njπk

∙
φkij

Mk −Mj

2
+ (1− φkij)max

µ
Mk −Mj

2
, 0

¶¸

−α
NX
j=1

NX
k=1

njπk

∙
φkji

Mi −M0

2
+ (1− φkji)max

µ
Mk −Mj

2
, 0

¶¸
. (31)

19 If C (m0) is strictly convex, profit cm0 − C (m0) is distributed to the owners of the scarce factor in the
vacancy-posting technology. This profit will not affect the labor market because the utility function is linear.

41



Similarly, the value of an employer in a match of productivity yi is:

rJi = 2yi − wi − δ (Ji − J0)

+αn0

NX
k=1

πk

∙
φk0i

Mk −M0

2
+ (1− φk0i)

Mk −M0

2

¸

−αm0

NX
k=1

πk

∙
φki0

Mi −M0

2
+ (1− φki0)

Mk −M0

2

¸

+α
NX
j=1

NX
k=1

njπk

∙
φkji

Mk −Mj

2
+ (1− φkji)max

µ
Mk −Mj

2
, 0

¶¸

−α
NX
j=1

NX
k=1

njπk

∙
φkij

Mi −M0

2
+ (1− φkij)max

µ
Mk −Mj

2
, 0

¶¸
. (32)

Since φkij = φkji, adding (32) to (31) and (30) to (29) respectively imply

rMi = 2yi − δ (Mi −M0) +
α (m0 + n0)

2

NX
k=1

πkφ
k
i0 (Mk −Mi)

α
NX
j=1

NX
k=1

njπkφ
k
ij (Mk +M0 −Mi −Mj) . (33)

rM0 = −c+ α (m0 + n0)

2

NX
k=1

πkφ
k
00 (Mk −M0)

+α
NX
j=1

NX
k=1

njπkφ
k
0j (Mk −Mj) . (34)

Since there is free entry of employers, any equilibrium with a positive measure of unmatched

employers must be such that the expected return to an unmatched employer is just enough to

cover the entry cost:

C 0 (m0) = c =
α

2

NX
i=0

NX
k=1

niπkφ
k
i0 (Mk −Mi) . (35)

If we compare (33), (34) and (35) with (25), (26) and (24) we see that —just as in the case with

equal and fixed populations of employers and workers— the planner’s first-order conditions and

the equilibrium conditions differ only in that in his calculations the planner imputes an “effec-

tive” contact rate equal to 2α while α is the contact rate to an individual agent. Alternatively,
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if we replace the subjective interest rate of the social planner r, with r0 = 2r+δ, then again, the

first order conditions corresponding to the modified planner’s problem correspond to one of the

competitive matching equilibria. If the equilibrium is unique, then the equilibrium allocation

is identical to that of the modified social planner’s economy.

7 Discussion

In this section we discuss how our paper relates to the existing theoretical literature on labor

market matching models with on-the-job search. Burdett (1978) adds on-the-job search to the

single-agent search decision problem faced by a worker who samples wages from an exogenous

distribution. Mortensen (1978) studies the relationship between the nature of the wage bargain-

ing problem between a worker and an employer and their choices of on-the-job search intensities.

He observes that the search intensities the employer and worker choose in a Nash equilibrium of

the noncooperative game are too high relative to those that would be chosen jointly to maximize

the value of the match. He then explores the ability of two alternative mechanisms to improve

efficiency when agents choose their search strategies noncooperatively. The mechanisms do not

require direct monitoring, but rely on both agents’ ability to commit to future actions. The

first is an ex ante agreement by each partner to make a counteroffer when the other receives

an attractive alternative matching opportunity. The second is an ex ante agreement to fully

compensate the other partner as a precondition for separation. Relative to the joint wealth

maximizing strategy, both partners search too much in the noncooperative Nash equilibrium

under the mechanism with commitment to counteroffer. But under the commitment to fully

compensate the partner in case separation, the Nash noncooperative equilibrium delivers the

pair of search strategies that maximize the joint surplus.

Diamond and Maskin (1979) extends Mortensen (1978) by embedding the search problem

of the single partnership in an equilibrium model with many potential partnerships. They

study the steady-state equilibria of a model in which agents are randomly paired in a costly

search process to carry out a single productive project. As in our setup, agents are ex ante
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homogeneous, but matches are heterogeneous ex post and utility is transferable. A difference

is that once matched, their agents decide whether or not to continue searching and only after

partners have stopped searching is the project completed and both agents exit the market. The

interesting situations arise when a matched agent finds the option to break the current match

to form a new one. In their language, a single breach (of contract) occurs when a matched

agent forms a new match with an unmatched agent, while a double breach takes place when two

matched agents leave their partners to form a new match. The two key differences from our

work are that in that model (i) agents always split the match surplus symmetrically, and (ii) in

anticipation of possible breaches, contracts may provide for compensation or “damages” to be

paid to the breached-against partner, which requires that agents have the ability to commit to

future actions or else that “courts” exogenously enforce these contracts. Diamond and Maskin

show that if the partner who breaks the match is required to fully compensate the breached-

against partner for the loss she suffers, then as in our competitive matching equilibrium, the two

individuals with the option to form a new match find it in their interest to breach precisely when

by doing so they increase the sum of the expected payoffs of the four parties involved in the

meeting. The difference is that our competitive matching equilibrium achieves this outcome

through a more flexible bargaining process involving side payments, without requiring that

agents be able to commit to compensate their partners in case of future breaches.

In Diamond and Maskin (1979) agents match to produce one time. In some unpublished

notes, Diamond and Maskin (1981) extend that framework to allow for continuous production.

Their physical environment corresponds to the special case of our economy with N = 2. In

this version they continue to assume that partners split the matching surplus symmetrically

and that when a partner separates she must pay the breached-against partner compensatory

damages, and explore some properties of a steady-state equilibrium in which single breaches

occur but double breaches do not.20

20 If we set N = 2, and conjecture that τkij = τkji and τ iij = 0 for j ≤ i, set τ100 = τ200 = τ210 = 1, and specialize
the analysis to an equilibrium with τ211 = 0, then (1)-(2) would reduce to the flow equations on page 4 of Diamond
and Maskin (1981).
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The model in Burdett, Imai and Wright (2004) also has ex ante homogeneous agents, ex post

heterogeneous matches, costly search, and agents who while matched decide whether to search

or not. They consider two setups. In the first setup, they assume that once two agents make

contact, they cannot observe the realization of their prospective match productivity unless they

drop their current partners (if they have any).21 Utility may be interpreted to be transferable

or not in this setup. For this version of the model they provide a full characterization of the

equilibrium set and its welfare properties. The second setup allows agents to keep the option

to stay with their current partners after observing the realization of the match quality with

a prospective partner. They lay out the model with two types of matches and argue that

their main results (e.g., multiplicity and efficiency properties of equilibria) are robust to this

generalization. This second setup relies on the assumption that utility is nontransferable.22

This must be so because if utility were transferable, then matched agents would attempt to

counter their partners’ outside offers just as they do in our model. So, although the physical

environment of Burdett, Imai and Wright (2004) is essentially the same as ours, their analysis is

quite different because they make assumptions that rule out the multilateral breach situations

that are an essential part of our notion of equilibrium.

Burdett and Mortensen (1998) develop an influential on-the-job search model with ex ante

homogeneous populations of employers and workers.23 Employers are assumed to post and
21This assumption makes their model extremely tractable by eliminating “composition effects”: The gains

from forming a match of a given quality are the same regardless of the state of the other partner, so the value
functions are independent of the endogenous distribution of match qualities among actual relationships. The fact
that payoffs depend on the distribution of characteristics of potential partners is a feature that arises naturally
in our model and in many other matching models, both with ex post match heterogeneity and on-the-job search
(e.g., Diamond and Maskin (1979, 1981)) and with ex ante heterogeneity, even with no on-the-job search (e.g.,
Burdett and Coles (1997) and Shimer and Smith (2000, 2001)).
22The on-the-job search model of Cornelius (2003) also assumes utility is nontransferable, but differs from

Burdett, Imai and Wright (2004) in that agents are ex ante heterogeneous, search is costless both on and off the
job, and the meeting technology is quadratic.
23The Burdett-Mortensen model was originally developed to explain wage dispersion among homogeneous

workers and relate it to employer size, but has by now been extended in many ways and applied to study a
wide range of issues, both empirically and theoretically. Van den Berg and Ridder (1998) and Bontemps, Robin
and Van den Berg (1999, 2000) are examples of papers that have structurally estimated the model. Theoretical
extensions and applications include Burdett and Coles (2003) and Burdett, Lagos and Wright (2004). See
Manning (2003) and Mortensen (2003) for other applications and more references.
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commit to wages, have access to a constant returns to scale production technology, and may

employ any number of workers at the posted wage. Whenever an employed worker meets an

employer with a posted wage higher than her current wage, she quits to join the new employer’s

workforce. Therefore, employers who post low wages experience high quit rates and have smaller

workforces in the steady state. By requiring that steady-state profit be equated across firms,

Burdett and Mortensen derive a nondegenerate equilibrium wage distribution. Note that there

is an extreme notion of commitment at work in this model: once the employer has chosen a

wage to offer its employees, the assumption is that it cannot be changed. It cannot be raised

to counter a worker’s outside offer, and it cannot be cut down once the outside offer is gone.

Postel-Vinay and Robin (2000) work out an extension of Burdett and Mortensen (1998)

with ex ante heterogeneous employers and workers. Employers still have the power to make

take-it-or-leave-it offers to workers but are in addition allowed to counter the offers that their

workers receive from competing employers. When a worker of productivity ε who is matched

to a firm with productivity p contacts a potential employer with productivity p0, the employers

enter a Bertrand competition for the worker that is ultimately won by the most productive firm.

If p > p0, then the worker stays with the current employer, who from then on is assumed to be

committed to paying her no less than the wage that won the Bertrand competition. If p < p0,

then the worker quits to go to the higher productivity employer, who is also assumed to pay no

less than the winning wage for the duration of the match.24 Relative to Burdett-Mortensen, the

extension of Postel-Vinay and Robin (2000) assumes a weaker form of commitment: Firms still

commit not to reduce wages in the future, but can counter outside offers. In a different way, the

extension of Coles (2001) also assumes a weaker form of commitment, this time by assuming
24 Instead of giving the firm the power to make a worker take-it-or-leave-it offers, in Dey and Flinn (2000)

employers and workers in continuing relationships split the match surplus according to the Nash cooperative
solution. If an employed worker is contacted by another employer, then the current and prospective employers
enter a Bertrand competition for the worker. Again, the employer with higher productivity can always offer the
worker higher continuation utility and hence “wins” the worker. From then on, once the worker’s outside offer
is gone, the assumption is that the match continues to split the surplus according to the Nash solution where
the threat point is taken to be the maximal continuation value offered to the worker by the firm that lost the
last Bertrand competition to hire him. (Workers who are hired from the unemployment pool bargain with their
value of search as threat point until they get a better outside offer while searching on the job.)
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firms cannot respond to outside offers but can change wages during times when their workforce

has no outside offers outstanding. From this perspective, our paper takes the analysis a step

further by modeling agents who cannot commit to any future actions.

Another relevant difference is that in the Burdett-Mortensen approach each employer oper-

ates a constant returns to scale production technology that can in principle employ the whole

population of workers. So if there are heterogeneous employers, it would be desirable and

technologically feasible to have all workers matched to the highest-productivity employer. In

contrast, we study the consequences of the opposite assumption to constant returns by as-

suming that each employer can hire at most one worker. This extreme version of decreasing

returns enriches the sets of transitions that employers and workers can engage in, with no loss

of tractability. For example, the model delivers endogenous “firing” in addition to endogenous

“quits”. Also, the limited-capacity assumption allows the model to exhibit instances of re-

placement hiring as well as situations in which — in the language of the empirical labor flows

literature — job reallocation induces worker reallocation and vice versa.

In Pissarides (1994) or Pissarides (2000) employed workers can search on the job, but em-

ployers do not (so all quits involve workers taking jobs that were previously vacant), and the

wage is assumed to be determined according to a linear surplus splitting rule at all times. Rel-

ative to what we do here, a key difference is that both in Pissarides (1994, 2000) and in Shimer

(2004) matched employers are not allowed to offer side payments to counter their worker’s out-

side offers, and similarly, a vacant employer who contacts an employed worker cannot make side

payments to persuade the worker to quit. Competition involving side payments among all the

parties involved in a typical on-the-job search meeting is an essential feature of the equilibrium

in the model we develop here. Also, we propose a competitive bargaining procedure to split the

gains from trade instead of relying on surplus splitting rules or the Nash axiomatic approach.25

25Shimer (2004) points out that in the context of the on-the-job search model of Pissarides (1994, 2000), a
simple linear surplus splitting rule is in general not equivalent to the Nash bargaining solution and that adopting
the former may lead to pair-wise inefficient outcomes. In addition, Shimer (2004) argues that when the linear
splitting rule is replaced by the Nash bargaining solution the model is capable of generating equilibria with wage
dispersion even in the case of ex ante identical employers and workers.
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8 Concluding Remarks

We have developed a model of on-the-job search that has many of the stylized properties

of actual labor markets. Worker flows exceed job flows, displaced agents suffer persistent

reductions in permanent incomes, job-to-job transitions are common and firms often engage

in simultaneous hiring and firing. We have proposed and analyzed a notion of competitive

equilibrium based on a particular bargaining procedure and explored its efficiency properties.

Several extensions seem worth pursuing. First, motivated by the observations in Bertola

and Rogerson (1997) and Blanchard and Portugal (2001), the model could be used to analyze

the effects that employment protection policies have on the amount of worker reallocation in

excess of job reallocation. Bertola and Rogerson find that despite higher employment protec-

tion in Europe than in the United States, European job turnover rates are not that different

from those in the United States, yet there is evidence that worker turnover (and in particular

the rate at which workers enter and leave unemployment) is lower in Europe. Blanchard and

Portugal report that relative to those in the United States, worker flows are much smaller in

Portugal, even for given job flows. In particular, the flow of workers out of employment in

Portugal barely exceeds job destruction, and they attribute this to the Portuguese employment

protection policies. Our model suggests a simple explanation for these observations: Employ-

ment protection policies censor precisely the transitions that cause worker turnover in excess of

job turnover, namely, separations resulting from double breaches and from employer-initiated

single breaches.

A related issue is that, given the empirical relevance of job-to-job flows, an appropriate

assessment of the welfare effects of employment protection policies calls for a model with on-

the-job search, perhaps along the lines we have proposed here. Calculating the welfare effects

of employment protection policies with a model that does not allow for job-to-job transitions

is likely to underestimate the welfare losses from the policy. For example, Blanchard and

Portugal assume that all separations (either employer- or worker-initiated) result in the worker
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being unemployed and the firm vacant. But suppose — as is the case in our model — that

separations do not necessarily result in both partners being unmatched. Then policies that

discourage separations will tend to have higher overall costs than in an environment where

quits necessarily entail an unemployment spell.

At a deeper level, we would also like to understand why employment protection policies

exist. In our framework with one-employer-to-one-worker matching and transferable utility,

workers and employers are essentially symmetric (even if allowing for free entry of employers

introduces a slight asymmetry), and employment protection policies result in no efficiency gains.

To explore the rationale behind the existence of employment protection policies, perhaps, we

have to introduce some asymmetry, such as that each worker works for one employer while each

employer hires several workers. This extension would also be useful to address many empirical

issues such as the size distribution of firms or the relationship between firm size and job and

worker flows.
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A Appendix

Proof of Lemma 1. Let f (n0) ≡ 2δ(1−n0)−α(1+π)n20
δ+2απn0

. Combining the ṅ2 = 0 and ṅ0 = 0

conditions we see that n1 = f (n0). It can be shown that f 0 < 0 on [0, 1], so to each n0 ∈ [0, 1]

corresponds a unique n1. In addition, f (n0) ≥ 0 if n0 ≤ η0 and f (n0) ≤ 1 if n0 ≥η0, where

η0 =

√
δ2+2αδ(1+π)−δ

α(1+π) and η0 =

√
(δ+απ)2+αδ(1+π)−(δ+απ)

α(1+π) ,

with 0 < η0 < η0 < 1. Let

G (n0;φ) ≡
£
αn20 − δ (1− n0)

¤
(δ + 2απn0)

2 − φαπ
£
2δ (1− n0)− α (1 + π)n20

¤2
.

Substituting n1 = f (n0) back into the ṅ0 = 0 delivers a single equation in n0 which can be

written as G (n0;φ) = 0. Direct calculations reveal that G(η0;φ) = αη200 − δ(1− η0) > 0 for all

φ ∈ [0, 1]. Also, G(η0;φ) = αη0
2− δ(1−η0)−αφπ. Note that an increase in φ causes G to shift

down uniformly. Therefore, to ensure that G(η0;φ) < 0 for all φ it suffices to guarantee that

G(η0; 0) < 0. This condition can be written as αη0
2 − δ(1 − η0) < 0, a parametric restriction

that is always satisfied. Finally, note that ∂G(n0;φ)
∂n0

¯̄̄
G(n0;φ)=0

> 0, which together with the fact

that f 0 < 0 implies that the steady state is unique.

Bargaining outcomes and the core.

Before proving part (c) of Proposition 1 we introduce some notation. Let I denote the set of

agents who are directly or indirectly (i.e. through a partner) involved in a meeting. For example,

I = {A,B,C,D} in the situation illustrated in Figure 3. Within the context of a meeting, an

allocation is a collection of partnerships. For example, there are two possible allocations for

the meeting in Figure 3: h(A,B) , (C,D)i and h(B,C) , (A,D)i. The first represents the case in

which A remains matched to B while C remains matched to D. The second corresponds to the

case in whichB and C form a new match while A andD become unmatched (or become matched

to each other but in state 0).26 Let Aj denote the set of all possible allocations in a meeting that
26We ignore other feasible allocations such as h(A,C) , (B,D)i, which would correspond to “break up both

matches without forming a new one” because they will play no role in the analysis that follows.
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concerns j agents. Then, A2 = {h(A,B)i , h(A) , (B)i}, A3 = {h(A,B) , (C)i , h(A) , (B,C)i} and

A4 = {h(A,B) , (C,D)i , h(B,C) , (A,D)i}. An allocation a ∈ Aj together with a payoff profile

Π ∈ Rj constitute an outcome [a,Π]. For example, [h(A) , (B)i , (ΠA,ΠB)] with ΠA = ΠB = V0

is the outcome corresponding to a situation in which two unmatched agents meet and no match

is formed. For any given meeting, a nonempty subset S ⊆ I is called a coalition. Let v denote

a function that assigns a real number to each coalition S. The number v (S) is called the worth

of coalition S. Since utility is fully transferable, v (S) summarizes the utility possibility set

of coalition S. Intuitively, v (S) is the total utility available to the coalition, which can then

be distributed among the coalition members in any way. An outcome [a,Π] is blocked by a

coalition S if there exists a payoff profile Π̃ with
P

i∈S Π̃i ≤ v (S) such that Π̃i > Πi for all

i ∈ S. With transferable utility, an outcome [a,Π] is blocked by S iff
P

i∈S Πi < v (S). An

outcome [a,Π] that is feasible for the grand coalition (i.e. such that
P

i∈I Πi ≤ v (I)) is in the

core if there is no coalition S that blocks this outcome. With transferable utility, an outcome

[a,Π] is in the core iff
P

i∈S Πi ≥ v (S) for all S ⊆ I and
P

i∈I Πi ≤ v (I).

Proof of part (c) of Proposition 1. The proof proceeds in three steps.

(Step 1). First consider the case illustrated in Figure 1, where an unemployed worker A

and an unmatched employer B meet and have the opportunity to form a match of productivity

yk > 0. For this case we have I = {A,B}, and the list of all possible coalitions is {A,B},

{A}, {B}. The worth of the grand coalition is v (I) = max (2V0, 2Vk) = 2Vk, while v ({A}) =

v ({B}) = V0. A vector of of payoffs (ΠA,ΠB) lies in the core if and only if (i) ΠA+ΠB = 2Vk;

and (ii) Πj ≥ V0 for j = A,B. Figure 9 shows the core: it is the segment on the ΠA+ΠB = 2Vk

line that lies between the equilibrium payoffs of subgames 1 and 2 of the bilateral bargaining

procedure. Both equilibrium payoffs as well as the expected payoff lie in the core.

(Step 2). Next consider the case illustrated in Figure 2: agent B who is currently in a

match of productivity yi with agent A, meets unmatched agent C and they draw a productive

opportunity yk. Here I = {A,B,C} and the list of all possible coalitions is {A,B,C}, {A,B},
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{A,C}, {B,C}, {A}, {B}, {C}. The corresponding values are v (I) = max (2Vi + V0, 2Vk + V0),

v ({A,B}) = 2Vi, v ({A,C}) = 2V0, v ({B,C}) = 2Vk, v ({A}) = v ({B}) = v ({C}) = V0.

Hence a payoff profile Π = (ΠA,ΠB,ΠC) belongs to the core if and only if: (i) ΠA+ΠB+ΠC =

max (2Vi + V0, 2Vk + V0); (ii) ΠA + ΠB ≥ 2Vi; (iii) ΠB + ΠC ≥ 2Vk; and (iv) Πj ≥ V0 for

j = A,B,C. If Vk > Vi the four conditions can be rewritten as: (1) ΠA = V0; (2) ΠB ≥ 2Vi−V0;

(3) ΠB + ΠC = 2Vk; and (4) ΠC ≥ V0. The first panel of Figure 10 illustrates the core for

this case; it consists of all the payoffs (V0,ΠB,ΠC) such that (ΠB,ΠC) lie on the segment of

the ΠB + ΠC = 2Vk line between the equilibrium payoffs of subgames 1 and 2 of the bilateral

bargaining procedure. From the figure it is clear that the equilibrium payoffs of both subgames

and the expected payoff all belong to the core. Conversely, if Vk < Vi, then the four conditions

reduce to: (1’) ΠA ≥ V0; (2’) ΠB ≥ 2Vk − V0; (3’) ΠA + ΠB = 2Vi; and (4’) ΠC = V0.

The second panel of Figure 10 illustrates the core for this case; it consists of all the payoffs

(ΠA,ΠB, V0) such that (ΠA,ΠB) lie on the segment of the ΠA + ΠB = 2Vi line between the

equilibrium payoffs of subgames 1 and 2 of the bilateral bargaining procedure. From the figure

it is again clear that the equilibrium payoffs of both subgames and the expected payoff all

belong to the core.

(Step 3). Finally, consider the case illustrated in Figure 3: while A and B are in a match

of productivity yi and C and D are in a match of productivity yj , agents B and C meet

and draw a productive opportunity yk. Here I = {A,B,C,D} and the list of all possi-

ble coalitions is: {A,B,C,D}, {A,B,C}, {A,B,D}, {B,C,D}, {A,C,D}, {A,B}, {C,D},

{A,C}, {B,D}, {B,C}, {A,D}, {A}, {B}, {C}, {D}. The corresponding values are v (I) =

max (2Vk + 2V0, 2Vi + 2Vj), v ({A,B,C}) = max (2Vi + V0, 2Vk + V0), v ({A,B,D}) = 2Vi +

V0, v ({B,C,D}) = max (2Vj + V0, 2Vk + V0), v ({A,C,D}) = 2Vj + V0, v ({A,B}) = 2Vi,

v ({C,D}) = 2Vj , v ({A,C}) = v {{B,D}} = v {{A,D}} = 2V0, v ({A}) = v ({B}) =

v ({C}) = v ({D}) = V0. A payoff profile Π = (ΠA,ΠB,ΠC ,ΠD) is in the core if and only

if it satisfies the following inequalities: ΠA + ΠB + ΠC + ΠD = max (2Vk + 2V0, 2Vi + 2Vj),

ΠA + ΠB +ΠC ≥ max (2Vi + V0, 2Vk + V0), ΠB + ΠC + ΠD ≥ max (2Vj + V0, 2Vk + V0), ΠA +
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ΠB+ΠD ≥ 2Vi+V0, ΠA+ΠC+ΠD ≥ 2Vj+V0, ΠA+ΠB ≥ 2Vi, ΠC+ΠD ≥ 2Vj , ΠB+ΠC ≥ 2Vk,

ΠA+ΠC ≥ 2V0, ΠB +ΠD ≥ 2V0, ΠA+ΠD ≥ 2V0, Πj ≥ V0 for j = A,B,C,D. It is straightfor-

ward to verify that the equilibrium and expected payoffs of the bilateral bargaining procedure

satisfy these fifteen inequalities.

We now provide a graphical analysis of the bargaining outcome in a meeting involving four

agents. Assume, with no loss of generality, that Vj > Vi. We begin analyzing the case in which

Vj + Vi − V0 < Vk. For this case it can be shown that any payoff profile in the core must have

ΠA = ΠD = V0, ΠB ≥ 2Vi−V0, ΠC ≥ 2Vj−V0, and ΠB+ΠC = 2Vk. A simple two-dimensional

figure can still be used to fully characterize the core. This is done in Figure 11.

Next consider the case Vj < Vk < Vj + Vi − V0. It is possible to show that any payoff

profile Π = (ΠA,ΠB,ΠC ,ΠD) in the core must satisfy: V0 ≤ ΠA ≤ 2 (Vi + Vj − Vk)− V0, V0 +

2 (Vk − Vj) ≤ ΠB ≤ 2Vi−V0, V0+2 (Vk − Vi) ≤ ΠC ≤ 2Vj−V0, V0 ≤ ΠD ≤ 2 (Vi + Vj − Vk)−V0.

Since illustrating the core payoffs now requires a three-dimensional diagram, we instead provide

a simpler two-dimensional graphical representation of the equilibrium payoffs induced by the

bilateral bargaining procedure. Figure 12 displays the payoffs that A and C get against those

of B and D. In Subgame 1, A and C get the largest joint payoff while B and D get the smallest

joint payoff within the core. The opposite happens in Subgame 2. The expected payoff lies

halfway on the segment between the joint payoffs corresponding to each subgame. Allocations

that yield joint payoffs outside this segment are not in the core.

The individual payoffs to A and C are shown in the first panel of Figure 13. Payoffs outside

the heavy square lie outside the core. In Subgame 1 the payoffs to A and C are given by

the upper-right corner of the square. Conversely, their payoffs in Subgame 2 are given by the

lower-left corner of the box. The expected payoffs to A and C lie at the center of the square.

Similarly, the second panel of Figure 13 shows the payoffs to B and D. And again, every payoff

profile Π in the core must have (ΠD,ΠB) inside the heavy square. The upper-right corner of this

box represents D and B’s payoffs in Subgame 2, when they get to make the take-it-or-leave-it
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offers. Their payoffs in Subgame 1, when A and C get to make take-it-or-leave-it offers, are on

the lower-left corner of the box. Their expected payoffs lie in the middle of the square.

Next consider the case Vi < Vk < Vj < Vi + Vj − V0. For this case it can be shown

that any payoff profile Π = (ΠA,ΠB,ΠC ,ΠD) in the core must satisfy: V0 ≤ ΠA ≤ 2Vi − V0,

V0 ≤ ΠB ≤ 2Vi−V0, V0+2 (Vk − Vi) ≤ ΠC ≤ 2Vj−V0, V0 ≤ ΠD ≤ 2 (Vi + Vj − Vk)−V0. Figure

14 displays the payoffs that A and C get against those of B and D. In Subgame 1 A and C get

the biggest joint payoff while B and D get the smallest joint payoff of any core allocation. The

opposite happens in Subgame 2. The expected payoff lies halfway on the segment between the

joint payoffs corresponding to each subgame. Allocations that yield joint payoffs outside this

segment are not in the core. The individual payoffs to A and C are shown in the first panel of

Figure 15. Payoffs outside the heavy rectangle lie outside the core. In Subgame 1 the payoffs

to A and C are given by the upper-right corner of the rectangle. Their payoffs in Subgame 2

are given by the lower-left corner of the rectangle. The expected payoffs to A and B lie at the

center of the rectangle. The second panel of Figure 15 shows the payoffs to B and D.

Finally, consider the case Vk < Vi < Vj < Vi + Vj − V0. For this case it can be shown

that any payoff profile Π = (ΠA,ΠB,ΠC ,ΠD) in the core must satisfy V0 ≤ ΠA ≤ 2Vi − V0,

V0 ≤ ΠB ≤ 2Vi − V0, V0 ≤ ΠC ≤ 2Vj − V0, and V0 ≤ ΠD ≤ 2Vj − V0. Figure 16 displays the

payoffs that A and C get against those of B and D. In Subgame 1 A and C get the biggest

joint payoff while B and D get the smallest joint payoff of any core allocation. The opposite

happens in Subgame 2. The expected joint payoff lies halfway on the segment between the

joint payoffs corresponding to each subgame. Allocations that yield joint payoffs outside this

segment are not in the core. The individual payoffs to A and C are shown in the first panel of

Figure 17. Payoffs outside the heavy rectangle lie outside the core. In Subgame 1 the payoffs

to A and C are given by the upper-right corner of the rectangle. Conversely, their payoffs in

Subgame 2 are given by the lower-left corner of the rectangle. The expected payoffs to A and

B lie at the center of the rectangle. Similarly, the second panel of Figure 17 shows the payoffs

to B and D.

54



The model with firing taxes.

We now analyze the bargaining procedure in the presence of firing taxes (Section 5.2). Start

with the single-breach situation of Figure 2. The bargaining procedure is:

Subgame 1. With probability a half, B makes a take-it-or-leave-it offer specifying con-

tinuation payoffs as well as a proposal to engage in joint production to either A or C. If B

was to offer continued joint production to A, he would offer A her minimum acceptable payoff,

Xk
BA = V0 + Sk

i0. Agent A would accept the offer and B’s payoff from continued production

with A would then be 2Vi − V0 − Sk
i0. Alternatively, if B was to offer joint production to C

he would offer her Xk
BC = V0, her minimum acceptable continuation value. C would accept

this offer and B’s payoff after paying the firing compensation to A would be 2Vk − V0 − T k
i0.

If Vk > Vi +
1
2

¡
T k
i0 − Sk

i0

¢
then B will choose to leave A and form a new match with C. The

payoffs to A, B and C will be V0 + Sk
i0, 2Vk − V0 − T k

i0, and V0 respectively. Alternatively, if

Vk ≤ Vi +
1
2

¡
T k
i0 − Sk

i0

¢
, then B will offer continued production to A and the payoffs to A, B

and C will be V0 + Sk
i0, 2Vi − V0 − Sk

i0, and V0.

Subgame 2. With probability another half, A and C simultaneously make offers to B.

Since A’s outside option is now V0 + Sk
i0, she is willing to offer B no more than 2Vi − V0 − Sk

i0.

On the other hand, the maximum C is willing to offer B is 2Vk − V0. Therefore A offers B

a continuation payoff Xi
AB = max

£
min

¡
2Vi − V0 − Sk

i0, 2Vk − V0 − T k
i0 + ε

¢
, V0 + Sk

i0

¤
and C’s

offer is for B’s continuation payoff to be Xk
CB = min

¡
2Vk − V0 − T k

i0, 2Vi − V0 − Sk
i0 + ε

¢
where

ε is an arbitrarily small positive number.27 If Vk > Vi+
1
2

¡
T k
i0 − Sk

i0

¢
then B forms a new match

with C and the payoffs to A, B and C are V0+Sk
i0, 2Vi−V0−Sk

i0, and 2Vk−
¡
2Vi − V0 − Sk

i0 + T k
i0

¢
respectively. Conversely, if Vk ≤ Vi +

1
2

¡
T k
i0 − Sk

i0

¢
then B stays matched to A and the payoffs

to A, B and C are 2Vi −
¡
2Vk − V0 − T k

i0

¢
, 2Vk − V0 − T k

i0, and V0 respectively.

In both subgames B leaves A for sure if and only if Vk > Vi+
1
2

¡
T k
i0 − Sk

i0

¢
; or equivalently,

27The compensation T k
i0 appears subtracting from the second argument of the “min” in Xk

AB and from the
first argument of the “min” in Xk

CB because when C transfers 2Vk − V0 to B, if B matches with C he only gets
2Vk − V0 − T k

ij after paying the firing tax. Since S
k
ij ≤ Vi − V0, agent A always wants to preserve her match

with B; the “max” in Xk
CB ensures that A offers B a continuation payoff at least equal to her outside option ,

V0 + Ski0, even if C’s offer to B is 2Vk − V0 − T k
i0 < V0 + Ski0.
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if 2Vk−T k
i0+V0+Sk

i0 > 2Vi+V0, i.e. if and only if the total surplus of A, B and C from forming

the new match after paying the net tax to the government (the left-hand side) exceeds the total

surplus associated with maintaining the existing match. In this case the expected capital gains

are ⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ −

¡
Vi − V0 − Sk

i0

¢
Vk − V0 − 1

2

¡
T k
i0 + Sk

i0

¢
Vk − Vi − 1

2

¡
T k
i0 − Sk

i0

¢
⎤⎦ .

If V0 + 1
2

¡
T k
i0 + Sk

i0

¢
≤ Vk ≤ Vi +

1
2

¡
T k
i0 − Sk

i0

¢
, then A and B preserve their match and the

expected capital gains are⎡⎣ ΓAΓB
ΓC

⎤⎦ =
⎡⎣ − £Vk − V0 − 1

2

¡
T k
i0 + Sk

i0

¢¤
Vk − V0 − 1

2

¡
T k
i0 + Sk

i0

¢
0

⎤⎦ .
If Vk < V0 +

1
2

¡
T k
i0 + Sk

i0

¢
, then B remains matched to A and is unable to extract a positive

expected side payment from her: all agents’ continuation payoffs remain unchanged and nobody

experiences capital gains or losses.

Next, consider the double-breach situation illustrated in Figure 3.

Subgame 1. With probability a half, A and C simultaneously make offers to B. C also

makes a take-it-or-leave-it offer to his existing partner D, and this offer is contingent on his

offer to B being rejected. C makes the smallest acceptable offer to D, namely V0 + Sk
ji. The

resulting payoff to C from continuing to match with D is 2Vj − V0 − Sk
ji, which constitutes the

opportunity cost for C to form a new match. Thus the maximum utility C is willing to give up

to attract B (i.e. the utility transfer to B that would make C just indifferent between staying

with D and forming a new match with B) is 2Vk − T k
ji − (2Vj − V0 − Sk

ji). This transfer would

guarantee B a continuation payoff equal to 2Vk − (2Vj − V0 + T k
ij + T k

ji − Sk
ji) (net of his tax

liability T k
ij for separating from A). If B “fires” A, then A’s continuation payoff is V0+Sk

ij . Thus

the maximum A is willing to offer B is 2Vi−V0−Sk
ij . Since this valuation is nonnegative (recall

that Sk
ij ≤ Vi − V0), A will want to make sure that B finds her offer acceptable, and for this

she must ensure that B’s payoff is at least as large as V0. Therefore, A offers B a continuation

payoff Xi
AB = Max{V0 + Sk

ij ,Min[2Vi − V0 − Sk
ij , 2Vk − 2Vj + V0 + Sk

ji − T k
ji − T k

ij + ε]} and

56



C offers B’s payoff to be Xk
CB = Min[2Vk − 2Vj + V0 + Sk

ji − T k
ji − T k

ij , 2Vi − V0 − Sk
ij + ε] for

an arbitrarily small positive ε. Then, B will accept C’s offer to form the new match for sure if

and only if Vk + V0 − Vi − Vj >
1
2

³
T k
ij + T k

ji − Sk
ij − Sk

ji

´
.

Subgame 2. With probability another half, B and D simultaneously make offers to C. B

also makes an offer to his current partner A, and this offer is contingent on his offer to C being

rejected. The analysis of this subgame parallels that of subgame 1 so we omit it.

In the two possible sequences of bargaining (subgame 1 and subgame 2) B and C abandon

their old partners to form a new match for sure if and only if the sum of the value of the

new match and the unmatched after paying the net tax to the government exceeds the sum of

two existing matches; i.e. if and only if 2Vk + 2V0 −
³
T k
ij + T k

ji − Sk
ij − Sk

ji

´
> 2Vi + 2Vj . The

equilibrium expected gains are:⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

−(Vi − V0 − Sk
ij)

Vk − Vj − 1
2

³
T k
ij + Sk

ij + T k
ji − Sk

ji

´
Vk − Vi − 1

2

³
T k
ji + Sk

ji + T k
ij − Sk

ij

´
−(Vj − V0 − Sk

ji)

⎤⎥⎥⎥⎥⎦
if Vi + Vj − V0 +

1
2

³
T k
ij + T k

ji − Sk
ij − Sk

ji

´
< Vk; and

⎡⎢⎢⎣
ΓA
ΓB
ΓC
ΓD

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
−max

h
Vk − Vj − 1

2

³
T k
ij + Sk

ij + T k
ji − Sk

ji

´
, 0
i

max
h
Vk − Vj − 1

2

³
T k
ij + Sk

ij + T k
ji − Sk

ji

´
, 0
i

max
h
Vk − Vi − 1

2

³
T k
ji + Sk

ji + T k
ij − Sk

ij

´
, 0
i

−max
h
Vk − Vi − 1

2

³
T k
ji + Sk

ji + T k
ij − Sk

ij

´
, 0
i

⎤⎥⎥⎥⎥⎥⎥⎦
if Vk ≤ Vi + Vj − V0 +

1
2

³
T k
ij + T k

ji − Sk
ij − Sk

ji

´
. If Vk < Vj +

1
2

³
T k
ij + Sk

ij + T k
ji − Sk

ji

´
, then B

remains matched to A and is unable to use his meeting with C to extract a side payment from A.

Similarly, C is unable to extract a side payment from D if Vk < Vi +
1
2

³
T k
ji + Sk

ji + T k
ij − Sk

ij

´
.

It follows from the previous analysis that firing taxes will in general alter the match forma-

tion and destruction decisions. Summarizing, in the single-breach situation of Figure 2, B will

destroy his match with A to form a new one with C if and only if Vk > Vi+
1
2

¡
T k
i0 − Sk

i0

¢
. And

in the double-breach situation of Figure 3 B and C leave their current partners if and only if
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Vk+V0 > Vi+Vj+
1
2

³
T k
ij + T k

ji − Sk
ij − Sk

ji

´
. Using the equilibrium break up rules and focusing

on a symmetric equilibrium bφkij = φkij , the Bellman equations are as reported in the main text.
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Figure 9: Core payoffs for a meeting involving two agents.

Figure 10: Core payoffs for a meeting involving three agents.
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Figure 11: Core payoffs for a meeting involving four agents with Vi < Vj and Vi+Vj −V0 < Vk.

Figure 12: Joint payoffs for a meeting involving four agents with Vi < Vj < Vk < Vi + Vj − V0.
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Figure 13: Individual payoffs for a meeting with four agents and Vi < Vj < Vk < Vi + Vj − V0.

Figure 14: Joint payoffs for a meeting involving four agents with Vi < Vk < Vj < Vi + Vj − V0.
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Figure 15: Individual payoffs for a meeting with four agents and Vi < Vk < Vj < Vi + Vj − V0.

Figure 16: Joint payoffs for a meeting involving four agents with Vk < Vi < Vj < Vi + Vj − V0.
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Figure 17: Individual payoffs for a meeting with four agents and Vk < Vi < Vj < Vi + Vj − V0.
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